--- datasets: - zzliang/GRIT - wanng/midjourney-v5-202304-clean library_name: diffusers license: apache-2.0 tags: - pruna-ai - safetensors pinned: true --- # Model Card for PrunaAI/Segmind-Vega-smashed This model was created using the [pruna](https://github.com/PrunaAI/pruna) library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead. ## Usage First things first, you need to install the pruna library: ```bash pip install pruna ``` You can [use the diffusers library to load the model](https://huggingface.co/PrunaAI/Segmind-Vega-smashed?library=diffusers) but this might not include all optimizations by default. To ensure that all optimizations are applied, use the pruna library to load the model using the following code: ```python from pruna import PrunaModel loaded_model = PrunaModel.from_pretrained( "PrunaAI/Segmind-Vega-smashed" ) # we can then run inference using the methods supported by the base model ``` For inference, you can use the inference methods of the original model like shown in [the original model card](https://huggingface.co/segmind/Segmind-Vega?library=diffusers). Alternatively, you can visit [the Pruna documentation](https://docs.pruna.ai/en/stable/) for more information. ## Smash Configuration The compression configuration of the model is stored in the `smash_config.json` file, which describes the optimization methods that were applied to the model. ```bash { "batcher": null, "cacher": null, "compiler": null, "factorizer": null, "kernel": null, "pruner": null, "quantizer": "hqq_diffusers", "hqq_diffusers_backend": "torchao_int4", "hqq_diffusers_group_size": 64, "hqq_diffusers_weight_bits": 8, "batch_size": 1, "device": "cuda", "device_map": null, "save_fns": [ "hqq_diffusers" ], "load_fns": [ "hqq_diffusers" ], "reapply_after_load": { "factorizer": null, "pruner": null, "quantizer": null, "kernel": null, "cacher": null, "compiler": null, "batcher": null } } ``` ## 🌍 Join the Pruna AI community! [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/JFQmtFKCjd) [![Reddit](https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social)](https://www.reddit.com/r/PrunaAI/)