File size: 12,924 Bytes
4e91831 906617f 4e91831 906617f 4e91831 906617f 4e91831 906617f 4e91831 906617f 4e91831 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- Qwen3
- GPTQ
- Int4-Int8Mix
- 量化修复
- vLLM
base_model:
- Qwen/Qwen3-235B-A22B-Thinking-2507
base_model_relation: quantized
---
# 通义千问3-235B-A22B-Thinking-2507-GPTQ-Int4-Int8Mix
基础型 [Qwen/Qwen3-235B-A22B-Thinking-2507](https://www.modelscope.cn/models/Qwen/Qwen3-235B-A22B-Thinking-2507)
### 【Vllm 单机8卡启动命令】
<i>注: 8卡启动一定要跟`--enable-expert-parallel` 否则该模型专家张量TP整除除不尽;4卡则不需要。 </i>
```
$CONTEXT_LENGTH=32768 # 262144
vllm serve \
tclf90/Qwen3-235B-A22B-Thinking-2507-GPTQ-Int4-Int8Mix \
--served-model-name Qwen3-235B-A22B-Thinking-2507-GPTQ-Int4-Int8Mix \
--enable-expert-parallel \
--swap-space 16 \
--max-num-seqs 512 \
--max-model-len $CONTEXT_LENGTH \
--max-seq-len-to-capture $CONTEXT_LENGTH \
--gpu-memory-utilization 0.9 \
--tensor-parallel-size 8 \
--trust-remote-code \
--disable-log-requests \
--host 0.0.0.0 \
--port 8000
```
### 【依赖】
```
vllm>=0.9.2
```
### 【模型更新日期】
```
2025-07-26
1. 首次commit
```
### 【模型列表】
| 文件大小 | 最近更新时间 |
|---------|--------------|
| `125GB` | `2025-07-26` |
### 【模型下载】
```python
from modelscope import snapshot_download
snapshot_download('tclf90/Qwen3-235B-A22B-Thinking-2507-GPTQ-Int4-Int8Mix', cache_dir="本地路径")
```
### 【介绍】
# Qwen3-235B-A22B-Thinking-2507
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Highlights
Over the past three months, we have continued to scale the **thinking capability** of Qwen3-235B-A22B, improving both the **quality and depth** of reasoning. We are pleased to introduce **Qwen3-235B-A22B-Thinking-2507**, featuring the following key enhancements:
- **Significantly improved performance** on reasoning tasks, including logical reasoning, mathematics, science, coding, and academic benchmarks that typically require human expertise — achieving **state-of-the-art results among open-source thinking models**.
- **Markedly better general capabilities**, such as instruction following, tool usage, text generation, and alignment with human preferences.
- **Enhanced 256K long-context understanding** capabilities.
**NOTE**: This version has an increased thinking length. We strongly recommend its use in highly complex reasoning tasks.

## Model Overview
**Qwen3-235B-A22B-Thinking-2507** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 235B in total and 22B activated
- Number of Paramaters (Non-Embedding): 234B
- Number of Layers: 94
- Number of Attention Heads (GQA): 64 for Q and 4 for KV
- Number of Experts: 128
- Number of Activated Experts: 8
- Context Length: **262,144 natively**.
**NOTE: This model supports only thinking mode.**
Additionally, to enforce model thinking, the default chat template automatically includes `<think>`. Therefore, it is normal for the model's output to contain only `</think>` without an explicit opening `<think>` tag.
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Performance
| | Deepseek-R1-0528 | OpenAI O4-mini | OpenAI O3 | Gemini-2.5 Pro | Claude4 Opus Thinking | Qwen3-235B-A22B Thinking | Qwen3-235B-A22B-Thinking-2507 |
|--- | --- | --- | --- | --- | --- | --- | --- |
| **Knowledge** | | | | | | | |
| MMLU-Pro | 85.0 | 81.9 | **85.9** | 85.6 | - | 82.8 | 84.4 |
| MMLU-Redux | 93.4 | 92.8 | **94.9** | 94.4 | 94.6 | 92.7 | 93.8 |
| GPQA | 81.0 | 81.4* | 83.3* | **86.4** | 79.6 | 71.1 | 81.1 |
| SuperGPQA | 61.7 | 56.4 | - | 62.3 | - | 60.7 | **64.9** |
| **Reasoning** | | | | | | |
| AIME25 | 87.5 | **92.7*** | 88.9* | 88.0 | 75.5 | 81.5 | 92.3 |
| HMMT25 | 79.4 | 66.7 | 77.5 | 82.5 | 58.3 | 62.5 | **83.9** |
| LiveBench 20241125 | 74.7 | 75.8 | 78.3 | **82.4** | 78.2 | 77.1 | 78.4 |
| HLE | 17.7# | 18.1* | 20.3 | **21.6** | 10.7 | 11.8# | 18.2# |
| **Coding** | | | | | | | |
| LiveCodeBench v6 (25.02-25.05) | 68.7 | 71.8 | 58.6 | 72.5 | 48.9 | 55.7 | **74.1** |
| CFEval | 2099 | 1929 | 2043 | 2001 | - | 2056 | **2134** |
| OJBench | 33.6 | 33.3 | 25.4 | **38.9** | - | 25.6 | 32.5 |
| **Alignment** | | | | | | | |
| IFEval | 79.1 | **92.4** | 92.1 | 90.8 | 89.7 | 83.4 | 87.8 |
| Arena-Hard v2$ | 72.2 | 59.3 | **80.8** | 72.5 | 59.1 | 61.5 | 79.7 |
| Creative Writing v3 | 86.3 | 78.8 | **87.7** | 85.9 | 83.8 | 84.6 | 86.1 |
| WritingBench | 83.2 | 78.4 | 85.3 | 83.1 | 79.1 | 80.3 | **88.3** |
| **Agent** | | | | | | | |
| BFCL-v3 | 63.8 | 67.2 | **72.4** | 67.2 | 61.8 | 70.8 | 71.9 |
| TAU2-Retail | 64.9 | 71.0 | **76.3** | 71.3 | - | 40.4 | 71.9 |
| TAU2-Airline | 60.0 | 59.0 | **70.0** | 60.0 | - | 30.0 | 58.0 |
| TAU2-Telecom | 33.3 | 42.0 | **60.5** | 37.4 | - | 21.9 | 45.6 |
| **Multilingualism** | | | | | | | |
| MultiIF | 63.5 | 78.0 | 80.3 | 77.8 | - | 71.9 | **80.6** |
| MMLU-ProX | 80.6 | 79.0 | 83.3 | **84.7** | - | 80.0 | 81.0 |
| INCLUDE | 79.4 | 80.8 | **86.6** | 85.1 | - | 78.7 | 81.0 |
| PolyMATH | 46.9 | 48.7 | 49.7 | 52.2 | - | 54.7 | **60.1** |
\* For OpenAI O4-mini and O3, we use a medium reasoning effort, except for scores marked with *, which are generated using high reasoning effort.
\# According to the official evaluation criteria of HLE, scores marked with \# refer to models that are not multi-modal and were evaluated only on the text-only subset.
$ For reproducibility, we report the win rates evaluated by GPT-4.1.
\& For highly challenging tasks (including PolyMATH and all reasoning and coding tasks), we use an output length of 81,920 tokens. For all other tasks, we set the output length to 32,768.
## Quickstart
The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3_moe'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-235B-A22B-Thinking-2507"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content) # no opening <think> tag
print("content:", content)
```
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
- SGLang:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-235B-A22B-Thinking-2507 --tp 8 --context-length 262144 --reasoning-parser qwen3
```
- vLLM:
```shell
vllm serve Qwen/Qwen3-235B-A22B-Thinking-2507 --tensor-parallel-size 8 --max-model-len 262144 --enable-reasoning --reasoning-parser deepseek_r1
```
**Note: If you encounter out-of-memory (OOM) issues, you may consider reducing the context length to a smaller value. However, since the model may require longer token sequences for reasoning, we strongly recommend using a context length greater than 131,072 when possible.**
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
## Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant
# Define LLM
# Using Alibaba Cloud Model Studio
llm_cfg = {
'model': 'qwen3-235b-a22b-thinking-2507',
'model_type': 'qwen_dashscope',
}
# Using OpenAI-compatible API endpoint. It is recommended to disable the reasoning and the tool call parsing
# functionality of the deployment frameworks and let Qwen-Agent automate the related operations. For example,
# `VLLM_USE_MODELSCOPE=true vllm serve Qwen/Qwen3-235B-A22B-Thinking-2507 --served-model-name Qwen3-235B-A22B-Thinking-2507 --tensor-parallel-size 8 --max-model-len 262144`.
#
# llm_cfg = {
# 'model': 'Qwen3-235B-A22B-Thinking-2507',
#
# # Use a custom endpoint compatible with OpenAI API:
# 'model_server': 'http://localhost:8000/v1', # api_base without reasoning and tool call parsing
# 'api_key': 'EMPTY',
# 'generate_cfg': {
# 'thought_in_content': True,
# },
# }
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- We suggest using `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 81,920 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3technicalreport,
title={Qwen3 Technical Report},
author={Qwen Team},
year={2025},
eprint={2505.09388},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.09388},
}
``` |