File size: 16,321 Bytes
f7597ba 3eb90af f7597ba 92d3dc0 f7597ba cfdff41 f7597ba cfdff41 f7597ba cfdff41 f7597ba cfdff41 f7597ba cfdff41 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba 92d3dc0 f7597ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
---
# Qwen3-Next-80B-A3B-Instruct
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
Over the past few months, we have observed increasingly clear trends toward scaling both total parameters and context lengths in the pursuit of more powerful and agentic artificial intelligence (AI).
We are excited to share our latest advancements in addressing these demands, centered on improving scaling efficiency through innovative model architecture.
We call this next-generation foundation models **Qwen3-Next**.
## Highlights
**Qwen3-Next-80B-A3B** is the first installment in the Qwen3-Next series and features the following key enchancements:
- **Hybrid Attention**: Replaces standard attention with the combination of **Gated DeltaNet** and **Gated Attention**, enabling efficient context modeling for ultra-long context length.
- **High-Sparsity Mixture-of-Experts (MoE)**: Achieves an extreme low activation ratio in MoE layers, drastically reducing FLOPs per token while preserving model capacity.
- **Stability Optimizations**: Includes techniques such as **zero-centered and weight-decayed layernorm**, and other stabilizing enhancements for robust pre-training and post-training.
- **Multi-Token Prediction (MTP)**: Boosts pretraining model performance and accelerates inference.
We are seeing strong performance in terms of both parameter efficiency and inference speed for Qwen3-Next-80B-A3B:
- Qwen3-Next-80B-A3B-Base outperforms Qwen3-32B-Base on downstream tasks with 10% of the total training cost and with 10 times inference throughput for context over 32K tokens.
- Qwen3-Next-80B-A3B-Instruct performs on par with Qwen3-235B-A22B-Instruct-2507 on certain benchmarks, while demonstrating significant advantages in handling ultra-long-context tasks up to 256K tokens.

For more details, please refer to our blog post [Qwen3-Next](https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list).
## Model Overview
> [!Note]
> **Qwen3-Next-80B-A3B-Instruct** supports only instruct (non-thinking) mode and does not generate ``<think></think>`` blocks in its output.
**Qwen3-Next-80B-A3B-Instruct** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining (15T tokens) & Post-training
- Number of Parameters: 80B in total and 3B activated
- Number of Paramaters (Non-Embedding): 79B
- Hidden Dimension: 2048
- Number of Layers: 48
- Hybrid Layout: 12 \* (3 \* (Gated DeltaNet -> MoE) -> 1 \* (Gated Attention -> MoE))
- Gated Attention:
- Number of Attention Heads: 16 for Q and 2 for KV
- Head Dimension: 256
- Rotary Position Embedding Dimension: 64
- Gated DeltaNet:
- Number of Linear Attention Heads: 32 for V and 16 for QK
- Head Dimension: 128
- Mixture of Experts:
- Number of Experts: 512
- Number of Activated Experts: 10
- Number of Shared Experts: 1
- Expert Intermediate Dimension: 512
- Context Length: 262,144 natively and extensible up to 1,010,000 tokens
<img src="https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-Next/model_architecture.png" height="384px" title="Qwen3-Next Model Architecture" />
## Performance
| | Qwen3-30B-A3B-Instruct-2507 | Qwen3-32B Non-Thinking | Qwen3-235B-A22B-Instruct-2507 | Qwen3-Next-80B-A3B-Instruct |
|--- | --- | --- | --- | --- |
| **Knowledge** | | | | |
| MMLU-Pro | 78.4 | 71.9 | **83.0** | 80.6 |
| MMLU-Redux | 89.3 | 85.7 | **93.1** | 90.9 |
| GPQA | 70.4 | 54.6 | **77.5** | 72.9 |
| SuperGPQA | 53.4 | 43.2 | **62.6** | 58.8 |
| **Reasoning** | | | | |
| AIME25 | 61.3 | 20.2 | **70.3** | 69.5 |
| HMMT25 | 43.0 | 9.8 | **55.4** | 54.1 |
| LiveBench 20241125 | 69.0 | 59.8 | 75.4 | **75.8** |
| **Coding** | | | | |
| LiveCodeBench v6 (25.02-25.05) | 43.2 | 29.1 | 51.8 | **56.6** |
| MultiPL-E | 83.8 | 76.9 | **87.9** | 87.8 |
| Aider-Polyglot | 35.6 | 40.0 | **57.3** | 49.8 |
| **Alignment** | | | | |
| IFEval | 84.7 | 83.2 | **88.7** | 87.6 |
| Arena-Hard v2* | 69.0 | 34.1 | 79.2 | **82.7** |
| Creative Writing v3 | 86.0 | 78.3 | **87.5** | 85.3 |
| WritingBench | 85.5 | 75.4 | 85.2 | **87.3** |
| **Agent** | | | | |
| BFCL-v3 | 65.1 | 63.0 | **70.9** | 70.3 |
| TAU1-Retail | 59.1 | 40.1 | **71.3** | 60.9 |
| TAU1-Airline | 40.0 | 17.0 | **44.0** | 44.0 |
| TAU2-Retail | 57.0 | 48.8 | **74.6** | 57.3 |
| TAU2-Airline | 38.0 | 24.0 | **50.0** | 45.5 |
| TAU2-Telecom | 12.3 | 24.6 | **32.5** | 13.2 |
| **Multilingualism** | | | | |
| MultiIF | 67.9 | 70.7 | **77.5** | 75.8 |
| MMLU-ProX | 72.0 | 69.3 | **79.4** | 76.7 |
| INCLUDE | 71.9 | 70.9 | **79.5** | 78.9 |
| PolyMATH | 43.1 | 22.5 | **50.2** | 45.9 |
*: For reproducibility, we report the win rates evaluated by GPT-4.1.
## Quickstart
The code for Qwen3-Next has been merged into the main branch of Hugging Face `transformers`.
```shell
pip install git+https://github.com/huggingface/transformers.git@main
```
With earlier versions, you will encounter the following error:
```
KeyError: 'qwen3_next'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-Next-80B-A3B-Instruct"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
dtype="auto",
device_map="auto",
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=16384,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True)
print("content:", content)
```
> [!Note]
> Multi-Token Prediction (MTP) is not generally available in Hugging Face Transformers.
> [!Note]
> The efficiency or throughput improvement depends highly on the implementation.
> It is recommended to adopt a dedicated inference framework, e.g., SGLang and vLLM, for inference tasks.
> [!Tip]
> Depending on the inference settings, you may observe better efficiency with [`flash-linear-attention`](https://github.com/fla-org/flash-linear-attention#installation) and [`causal-conv1d`](https://github.com/Dao-AILab/causal-conv1d).
> See the links for detailed instructions and requirements.
## Deployment
For deployment, you can use the latest `sglang` or `vllm` to create an OpenAI-compatible API endpoint.
### SGLang
[SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models.
SGLang could be used to launch a server with OpenAI-compatible API service.
`sglang>=0.5.2` is required for Qwen3-Next, which can be installed using:
```shell
pip install 'sglang[all]>=0.5.2'
```
See [its documentation](https://docs.sglang.ai/get_started/install.html) for more details.
The following command can be used to create an API endpoint at `http://localhost:30000/v1` with maximum context length 256K tokens using tensor parallel on 4 GPUs.
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-Next-80B-A3B-Instruct --port 30000 --tp-size 4 --context-length 262144 --mem-fraction-static 0.8
```
The following command is recommended for MTP with the rest settings the same as above:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-Next-80B-A3B-Instruct --port 30000 --tp-size 4 --context-length 262144 --mem-fraction-static 0.8 --speculative-algo NEXTN --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4
```
> [!Note]
> The default context length is 256K. Consider reducing the context length to a smaller value, e.g., `32768`, if the server fails to start.
Please also refer to SGLang's usage guide on [Qwen3-Next](https://docs.sglang.ai/basic_usage/qwen3.html).
### vLLM
[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs.
vLLM could be used to launch a server with OpenAI-compatible API service.
`vllm>=0.10.2` is required for Qwen3-Next, which can be installed using:
```shell
pip install 'vllm>=0.10.2'
```
See [its documentation](https://docs.vllm.ai/en/stable/getting_started/installation/index.html) for more details.
The following command can be used to create an API endpoint at `http://localhost:8000/v1` with maximum context length 256K tokens using tensor parallel on 4 GPUs.
```shell
vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct --port 8000 --tensor-parallel-size 4 --max-model-len 262144
```
The following command is recommended for MTP with the rest settings the same as above:
```shell
vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct --port 8000 --tensor-parallel-size 4 --max-model-len 262144 --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
```
> [!Note]
> The default context length is 256K. Consider reducing the context length to a smaller value, e.g., `32768`, if the server fails to start.
Please also refer to vLLM's usage guide on [Qwen3-Next](https://docs.vllm.ai/projects/recipes/en/latest/Qwen/Qwen3-Next.html).
## Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
'model': 'Qwen3-Next-80B-A3B-Instruct',
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
## Processing Ultra-Long Texts
Qwen3-Next natively supports context lengths of up to 262,144 tokens.
For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively.
We have validated the model's performance on context lengths of up to 1 million tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
YaRN is currently supported by several inference frameworks, e.g., `transformers`, `vllm` and `sglang`.
In general, there are two approaches to enabling YaRN for supported frameworks:
- Modifying the model files:
In the `config.json` file, add the `rope_scaling` fields:
```json
{
...,
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 262144
}
}
```
- Passing command line arguments:
For `vllm`, you can use
```shell
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":262144}' --max-model-len 1010000
```
For `sglang`, you can use
```shell
SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":262144}}' --context-length 1010000
```
> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise adding the `rope_scaling` configuration only when processing long contexts is required.
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 524,288 tokens, it would be better to set `factor` as 2.0.
#### Long-Context Performance
We test the model on an 1M version of the [RULER](https://arxiv.org/abs/2404.06654) benchmark.
| Model Name | Acc avg | 4k | 8k | 16k | 32k | 64k | 96k | 128k | 192k | 256k | 384k | 512k | 640k | 768k | 896k | 1000k |
|---------------------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Qwen3-30B-A3B-Instruct-2507 | 86.8 | 98.0 | 96.7 | 96.9 | 97.2 | 93.4 | 91.0 | 89.1 | 89.8 | 82.5 | 83.6 | 78.4 | 79.7 | 77.6 | 75.7 | 72.8 |
| Qwen3-235B-A22B-Instruct-2507 | 92.5 | 98.5 | 97.6 | 96.9 | 97.3 | 95.8 | 94.9 | 93.9 | 94.5 | 91.0 | 92.2 | 90.9 | 87.8 | 84.8 | 86.5 | 84.5 |
| Qwen3-Next-80B-A3B-Instruct | 91.8 | 98.5 | 99.0 | 98.0 | 98.7 | 97.6 | 95.0 | 96.0 | 94.0 | 93.5 | 91.7 | 86.9 | 85.5 | 81.7 | 80.3 | 80.3 |
* Qwen3-Next are evaluated with YaRN enabled. Qwen3-2507 models are evaluated with Dual Chunk Attention enabled.
* Since the evaluation is time-consuming, we use 260 samples for each length (13 sub-tasks, 20 samples for each).
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3technicalreport,
title={Qwen3 Technical Report},
author={Qwen Team},
year={2025},
eprint={2505.09388},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.09388},
}
@article{qwen2.5-1m,
title={Qwen2.5-1M Technical Report},
author={An Yang and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoyan Huang and Jiandong Jiang and Jianhong Tu and Jianwei Zhang and Jingren Zhou and Junyang Lin and Kai Dang and Kexin Yang and Le Yu and Mei Li and Minmin Sun and Qin Zhu and Rui Men and Tao He and Weijia Xu and Wenbiao Yin and Wenyuan Yu and Xiafei Qiu and Xingzhang Ren and Xinlong Yang and Yong Li and Zhiying Xu and Zipeng Zhang},
journal={arXiv preprint arXiv:2501.15383},
year={2025}
}
``` |