Upload wkv.py
Browse files
wkv.py
CHANGED
|
@@ -1,16 +1,16 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from einops import rearrange
|
| 3 |
|
| 4 |
-
from .hybrid_cache import TimeMixState, BlockState
|
| 5 |
import math
|
| 6 |
import torch.nn as nn
|
| 7 |
from torch.nn import functional as F
|
| 8 |
from .configuration_rwkv_hybrid import RwkvHybridConfig
|
| 9 |
-
from typing import
|
| 10 |
-
from
|
| 11 |
|
| 12 |
try:
|
| 13 |
-
import triton
|
| 14 |
from rwkvfla.ops.rwkv7 import (
|
| 15 |
fused_recurrent_rwkv7,
|
| 16 |
chunk_rwkv7,
|
|
@@ -33,17 +33,26 @@ except ImportError:
|
|
| 33 |
fused_recurrent_rwkv6 = native_recurrent_rwkv6
|
| 34 |
fused_addcmul_rwkv7 = torch_addcmul_rwkv7
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
class Rwkv_Tmix_x070(nn.Module):
|
| 38 |
-
def __init__(self, args: RwkvHybridConfig, layer_id,
|
| 39 |
super().__init__()
|
| 40 |
self.args = args
|
| 41 |
self.layer_id = layer_id
|
| 42 |
self.hidden_size = args.hidden_size
|
| 43 |
|
| 44 |
-
self.update_v_first = update_v_first
|
| 45 |
-
self.get_v_first = get_v_first
|
| 46 |
-
|
| 47 |
self.head_size = args.head_size
|
| 48 |
self.n_head = args.num_wkv_heads
|
| 49 |
assert args.hidden_size % self.n_head == 0
|
|
@@ -55,7 +64,7 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 55 |
self.x_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
| 56 |
self.x_v = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
| 57 |
self.x_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
| 58 |
-
|
| 59 |
D_DECAY_LORA = 64
|
| 60 |
D_AAA_LORA = 64
|
| 61 |
D_MV_LORA = 32
|
|
@@ -122,7 +131,6 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 122 |
)
|
| 123 |
nn.init.constant_(
|
| 124 |
self.x_a, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
|
| 125 |
-
|
| 126 |
|
| 127 |
def ortho_init(x, scale):
|
| 128 |
shape = x.shape
|
|
@@ -181,7 +189,7 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 181 |
D_GATE_LORA, self.args.hidden_size), 0.1)
|
| 182 |
)
|
| 183 |
nn.init.constant_(
|
| 184 |
-
|
| 185 |
|
| 186 |
nn.init.constant_(self.k_k, 0.85)
|
| 187 |
nn.init.constant_(self.k_a, 1.0)
|
|
@@ -196,27 +204,27 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 196 |
nn.init.ones_(self.ln_x.weight)
|
| 197 |
nn.init.zeros_(self.ln_x.bias)
|
| 198 |
|
| 199 |
-
def apply_wkv7_state(
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
o, state = native_recurrent_rwkv7(
|
| 208 |
r=r, k=k, v=v, w=w,
|
| 209 |
a=a, b=b,
|
| 210 |
scale=1.0,
|
| 211 |
-
initial_state=s
|
| 212 |
output_final_state=True,
|
| 213 |
head_first=True,
|
| 214 |
)
|
| 215 |
-
state = state.transpose(-1, -2)
|
| 216 |
x = rearrange(o, "b h l d -> b l (h d)")
|
| 217 |
else:
|
| 218 |
-
r, w, k, v, a, b = map(lambda x: rearrange(
|
| 219 |
-
|
|
|
|
| 220 |
o, state = wkv7_func(
|
| 221 |
r=r, k=k, v=v, w=w,
|
| 222 |
a=a, b=b,
|
|
@@ -224,32 +232,27 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 224 |
initial_state=s,
|
| 225 |
output_final_state=output_final_state,
|
| 226 |
cu_seqlens=cu_seqlens,
|
| 227 |
-
head_first=
|
| 228 |
)
|
| 229 |
x = rearrange(o, "b l h d -> b l (h d)")
|
| 230 |
return x, state
|
| 231 |
|
|
|
|
| 232 |
def forward(
|
| 233 |
self,
|
| 234 |
hidden_states,
|
| 235 |
-
last_state:
|
| 236 |
-
sequence_mask: Optional[torch.Tensor] = None,
|
| 237 |
use_cache: Optional[bool] = False,
|
| 238 |
cu_seqlens: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 239 |
**kwargs
|
| 240 |
):
|
| 241 |
-
if sequence_mask is not None:
|
| 242 |
-
hidden_states = hidden_states.mul(
|
| 243 |
-
sequence_mask[:, -hidden_states.shape[-2]:, None])
|
| 244 |
-
|
| 245 |
shift_state = last_state.shift_state
|
| 246 |
B, T, C = hidden_states.size()
|
| 247 |
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
1), hidden_states[:, :-1]), dim=1) - hidden_states
|
| 251 |
-
else:
|
| 252 |
-
xx = self.time_shift(hidden_states) - hidden_states
|
| 253 |
|
| 254 |
lx = hidden_states[:, -1]
|
| 255 |
|
|
@@ -257,7 +260,8 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 257 |
xr, xw, xk, xv, xa, xg = fused_addcmul_rwkv7(
|
| 258 |
hidden_states, xx, self.x_r, self.x_w, self.x_k, self.x_v, self.x_a, self.x_g)
|
| 259 |
else:
|
| 260 |
-
xr, xw, xk, xv, xa, _ = fused_addcmul_rwkv7(
|
|
|
|
| 261 |
|
| 262 |
r = self.receptance(xr)
|
| 263 |
w = (
|
|
@@ -266,21 +270,23 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 266 |
k = self.key(xk)
|
| 267 |
v = self.value(xv)
|
| 268 |
if self.layer_id == 0:
|
| 269 |
-
|
| 270 |
else:
|
| 271 |
-
|
| 272 |
-
v = v + (self.get_v_first().to(v.device) - v) * torch.sigmoid(
|
| 273 |
self.v0 + (xv @ self.v1) @ self.v2
|
| 274 |
-
) # add value residual
|
| 275 |
|
|
|
|
|
|
|
| 276 |
a = torch.sigmoid(
|
| 277 |
self.a0 + (xa @ self.a1) @ self.a2
|
| 278 |
) # a is "in-context learning rate"
|
| 279 |
if self.args.wkv_has_gate:
|
| 280 |
-
g = torch.sigmoid(xg @ self.g1) @ self.g2
|
| 281 |
kk = k * self.k_k
|
| 282 |
-
kk = F.normalize(kk.view(B, T, self.n_head, -1),
|
| 283 |
-
|
|
|
|
| 284 |
|
| 285 |
wkv_state = last_state.wkv_state
|
| 286 |
hidden_states, wkv_state = self.apply_wkv7_state(
|
|
@@ -292,66 +298,68 @@ class Rwkv_Tmix_x070(nn.Module):
|
|
| 292 |
(kk * a),
|
| 293 |
s=wkv_state,
|
| 294 |
output_final_state=use_cache,
|
| 295 |
-
cu_seqlens=cu_seqlens
|
| 296 |
-
head_first=False
|
| 297 |
)
|
| 298 |
if self.args.wkv_has_group_norm:
|
| 299 |
hidden_states = self.ln_x(
|
| 300 |
hidden_states.view(B * T, C)).view(B, T, C)
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
|
|
|
|
|
|
|
|
|
| 307 |
hidden_states = self.output(
|
| 308 |
hidden_states * g) if self.args.wkv_has_gate else self.output(hidden_states)
|
| 309 |
-
return hidden_states,
|
| 310 |
|
| 311 |
|
| 312 |
class Rwkv7Attention(nn.Module):
|
| 313 |
-
def __init__(self, args: RwkvHybridConfig, layer_id
|
| 314 |
super().__init__()
|
| 315 |
self.args = args
|
| 316 |
self.layer_idx = layer_id
|
| 317 |
-
self.time_mixer = Rwkv_Tmix_x070(
|
| 318 |
-
args, layer_id, update_v_first, get_v_first)
|
| 319 |
|
| 320 |
def forward(
|
| 321 |
self,
|
| 322 |
hidden_states: torch.Tensor,
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
output_attentions: Optional[bool] = False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
**kwargs
|
| 328 |
):
|
| 329 |
-
|
| 330 |
-
assert len(sequence_mask.shape) == 2, (
|
| 331 |
-
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 332 |
-
"for padding purposes (0 indicating padding). "
|
| 333 |
-
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 334 |
-
)
|
| 335 |
batch_size, token_length, _ = hidden_states.shape
|
| 336 |
|
| 337 |
-
if
|
| 338 |
last_state = past_key_value[self.layer_idx][0]
|
| 339 |
else:
|
| 340 |
last_state = self.init_state(
|
| 341 |
batch_size, hidden_states.device, hidden_states.dtype
|
| 342 |
)
|
| 343 |
|
| 344 |
-
attn_output, states = self.time_mixer(hidden_states=hidden_states,
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
|
| 351 |
-
if
|
|
|
|
| 352 |
past_key_value.update(token_length, last_state, self.layer_idx)
|
| 353 |
|
| 354 |
-
return attn_output, None
|
| 355 |
|
| 356 |
def init_state(self, batch_size, device, dtype) -> BlockState:
|
| 357 |
wkv_states = torch.zeros(
|
|
@@ -364,10 +372,10 @@ class Rwkv7Attention(nn.Module):
|
|
| 364 |
device=device,
|
| 365 |
dtype=torch.float32,
|
| 366 |
)
|
| 367 |
-
|
| 368 |
(batch_size, self.args.hidden_size), device=device, dtype=dtype
|
| 369 |
)
|
| 370 |
-
return BlockState(
|
| 371 |
|
| 372 |
|
| 373 |
class Rwkv_Tmix_x060(nn.Module):
|
|
@@ -380,8 +388,6 @@ class Rwkv_Tmix_x060(nn.Module):
|
|
| 380 |
self.head_size = args.head_size
|
| 381 |
self.n_head = args.num_wkv_heads
|
| 382 |
assert args.hidden_size % self.n_head == 0
|
| 383 |
-
H = self.n_head
|
| 384 |
-
N = self.head_size
|
| 385 |
|
| 386 |
with torch.no_grad():
|
| 387 |
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
|
|
@@ -445,7 +451,6 @@ class Rwkv_Tmix_x060(nn.Module):
|
|
| 445 |
|
| 446 |
self.time_faaaa = nn.Parameter(
|
| 447 |
tmp.reshape(self.n_head, self.head_size))
|
| 448 |
-
# self.time_state = nn.Parameter(torch.zeros(self.n_head, self.head_size, self.head_size))
|
| 449 |
|
| 450 |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
| 451 |
self.receptance = nn.Linear(
|
|
@@ -465,27 +470,36 @@ class Rwkv_Tmix_x060(nn.Module):
|
|
| 465 |
def post_init(self):
|
| 466 |
pass
|
| 467 |
|
| 468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
shift_state = last_state.shift_state
|
| 470 |
-
B, T, C =
|
| 471 |
H = self.n_head
|
| 472 |
-
if shift_state is not None:
|
| 473 |
-
xx = torch.concat((shift_state.unsqueeze(1), x[:, :-1]), dim=1) - x
|
| 474 |
-
else:
|
| 475 |
-
xx = self.time_shift(x) - x
|
| 476 |
-
lx = x[:, -1]
|
| 477 |
|
| 478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B *
|
| 480 |
T, 5, -1).transpose(0, 1)
|
| 481 |
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
|
| 482 |
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
| 483 |
|
| 484 |
-
xw =
|
| 485 |
-
xk =
|
| 486 |
-
xv =
|
| 487 |
-
xr =
|
| 488 |
-
xg =
|
| 489 |
|
| 490 |
r = self.receptance(xr)
|
| 491 |
k = self.key(xk)
|
|
@@ -496,16 +510,18 @@ class Rwkv_Tmix_x060(nn.Module):
|
|
| 496 |
w = self.time_decay + ww
|
| 497 |
|
| 498 |
wkv_state = last_state.wkv_state
|
| 499 |
-
|
| 500 |
B, T, C, H, r, k, v, w, u=self.time_faaaa, s=wkv_state
|
| 501 |
)
|
| 502 |
if self.args.wkv_has_group_norm:
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
| 506 |
|
| 507 |
def apply_wkv6_state(self, B, T, C, H, r, k, v, w, u, s):
|
| 508 |
-
r, w, k, v = map(lambda x: rearrange(
|
|
|
|
| 509 |
|
| 510 |
if r.device.type == "cpu":
|
| 511 |
wkv6_func = native_recurrent_rwkv6
|
|
@@ -535,31 +551,56 @@ class Rwkv6Attention(nn.Module):
|
|
| 535 |
self.layer_idx = layer_id
|
| 536 |
self.time_mixer = Rwkv_Tmix_x060(args, layer_id, **kwargs)
|
| 537 |
|
| 538 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
attn_output = hidden_states
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
(B, self.args.num_wkv_heads,
|
| 549 |
-
self.args.head_size, self.args.head_size),
|
| 550 |
-
device=attn_output.device,
|
| 551 |
-
dtype=torch.float32,
|
| 552 |
-
)
|
| 553 |
-
token_shift = torch.zeros(
|
| 554 |
-
(B, C), device=attn_output.device, dtype=attn_output.dtype
|
| 555 |
)
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import torch
|
| 3 |
from einops import rearrange
|
| 4 |
|
|
|
|
| 5 |
import math
|
| 6 |
import torch.nn as nn
|
| 7 |
from torch.nn import functional as F
|
| 8 |
from .configuration_rwkv_hybrid import RwkvHybridConfig
|
| 9 |
+
from typing import Optional
|
| 10 |
+
from .hybrid_cache import HybridCache, AttnState, BlockState
|
| 11 |
|
| 12 |
try:
|
| 13 |
+
import triton # pylint: disable=F401
|
| 14 |
from rwkvfla.ops.rwkv7 import (
|
| 15 |
fused_recurrent_rwkv7,
|
| 16 |
chunk_rwkv7,
|
|
|
|
| 33 |
fused_recurrent_rwkv6 = native_recurrent_rwkv6
|
| 34 |
fused_addcmul_rwkv7 = torch_addcmul_rwkv7
|
| 35 |
|
| 36 |
+
from rwkvfla.utils import check_pytorch_version
|
| 37 |
+
|
| 38 |
+
if check_pytorch_version("2.6"):
|
| 39 |
+
compile_decorator = torch.compile
|
| 40 |
+
torch._dynamo.config.cache_size_limit = 512
|
| 41 |
+
else:
|
| 42 |
+
def compile_decorator(func):
|
| 43 |
+
return func
|
| 44 |
+
|
| 45 |
+
wkv_mode = os.environ.get("WKV_MODE", "fused")
|
| 46 |
+
wkv_mode = wkv_mode.lower()
|
| 47 |
+
assert wkv_mode in ['fused', 'chunk', 'pytorch']
|
| 48 |
|
| 49 |
class Rwkv_Tmix_x070(nn.Module):
|
| 50 |
+
def __init__(self, args: RwkvHybridConfig, layer_id, **kwargs):
|
| 51 |
super().__init__()
|
| 52 |
self.args = args
|
| 53 |
self.layer_id = layer_id
|
| 54 |
self.hidden_size = args.hidden_size
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
self.head_size = args.head_size
|
| 57 |
self.n_head = args.num_wkv_heads
|
| 58 |
assert args.hidden_size % self.n_head == 0
|
|
|
|
| 64 |
self.x_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
| 65 |
self.x_v = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
| 66 |
self.x_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
| 67 |
+
|
| 68 |
D_DECAY_LORA = 64
|
| 69 |
D_AAA_LORA = 64
|
| 70 |
D_MV_LORA = 32
|
|
|
|
| 131 |
)
|
| 132 |
nn.init.constant_(
|
| 133 |
self.x_a, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
|
|
|
|
| 134 |
|
| 135 |
def ortho_init(x, scale):
|
| 136 |
shape = x.shape
|
|
|
|
| 189 |
D_GATE_LORA, self.args.hidden_size), 0.1)
|
| 190 |
)
|
| 191 |
nn.init.constant_(
|
| 192 |
+
self.x_g, 1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
|
| 193 |
|
| 194 |
nn.init.constant_(self.k_k, 0.85)
|
| 195 |
nn.init.constant_(self.k_a, 1.0)
|
|
|
|
| 204 |
nn.init.ones_(self.ln_x.weight)
|
| 205 |
nn.init.zeros_(self.ln_x.bias)
|
| 206 |
|
| 207 |
+
def apply_wkv7_state(
|
| 208 |
+
self, r, k, v, w, a, b, s,
|
| 209 |
+
output_final_state,
|
| 210 |
+
cu_seqlens
|
| 211 |
+
):
|
| 212 |
+
if wkv_mode == 'pytorch':
|
| 213 |
+
r, w, k, v, a, b = map(lambda x: rearrange(
|
| 214 |
+
x, 'b l (h d) -> b h l d', h=self.n_head), (r, w, k, v, a, b))
|
| 215 |
o, state = native_recurrent_rwkv7(
|
| 216 |
r=r, k=k, v=v, w=w,
|
| 217 |
a=a, b=b,
|
| 218 |
scale=1.0,
|
| 219 |
+
initial_state=s,
|
| 220 |
output_final_state=True,
|
| 221 |
head_first=True,
|
| 222 |
)
|
|
|
|
| 223 |
x = rearrange(o, "b h l d -> b l (h d)")
|
| 224 |
else:
|
| 225 |
+
r, w, k, v, a, b = map(lambda x: rearrange(
|
| 226 |
+
x, 'b l (h d) -> b l h d', h=self.n_head), (r, w, k, v, a, b))
|
| 227 |
+
wkv7_func = chunk_rwkv7 if wkv_mode == 'chunk' else fused_recurrent_rwkv7
|
| 228 |
o, state = wkv7_func(
|
| 229 |
r=r, k=k, v=v, w=w,
|
| 230 |
a=a, b=b,
|
|
|
|
| 232 |
initial_state=s,
|
| 233 |
output_final_state=output_final_state,
|
| 234 |
cu_seqlens=cu_seqlens,
|
| 235 |
+
head_first=False,
|
| 236 |
)
|
| 237 |
x = rearrange(o, "b l h d -> b l (h d)")
|
| 238 |
return x, state
|
| 239 |
|
| 240 |
+
@compile_decorator
|
| 241 |
def forward(
|
| 242 |
self,
|
| 243 |
hidden_states,
|
| 244 |
+
last_state: AttnState,
|
|
|
|
| 245 |
use_cache: Optional[bool] = False,
|
| 246 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 247 |
+
v_first: Optional[torch.Tensor] = None,
|
| 248 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 249 |
**kwargs
|
| 250 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
shift_state = last_state.shift_state
|
| 252 |
B, T, C = hidden_states.size()
|
| 253 |
|
| 254 |
+
xx = torch.concat((shift_state.unsqueeze(
|
| 255 |
+
1), hidden_states[:, :-1]), dim=1) - hidden_states
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
lx = hidden_states[:, -1]
|
| 258 |
|
|
|
|
| 260 |
xr, xw, xk, xv, xa, xg = fused_addcmul_rwkv7(
|
| 261 |
hidden_states, xx, self.x_r, self.x_w, self.x_k, self.x_v, self.x_a, self.x_g)
|
| 262 |
else:
|
| 263 |
+
xr, xw, xk, xv, xa, _ = fused_addcmul_rwkv7(
|
| 264 |
+
hidden_states, xx, self.x_r, self.x_w, self.x_k, self.x_v, self.x_a)
|
| 265 |
|
| 266 |
r = self.receptance(xr)
|
| 267 |
w = (
|
|
|
|
| 270 |
k = self.key(xk)
|
| 271 |
v = self.value(xv)
|
| 272 |
if self.layer_id == 0:
|
| 273 |
+
v_first = v
|
| 274 |
else:
|
| 275 |
+
v = torch.lerp(v, v_first, torch.sigmoid(
|
|
|
|
| 276 |
self.v0 + (xv @ self.v1) @ self.v2
|
| 277 |
+
)) # add value residual
|
| 278 |
|
| 279 |
+
if attention_mask is not None:
|
| 280 |
+
v = v.mul(attention_mask[:, -v.shape[-2]:, None])
|
| 281 |
a = torch.sigmoid(
|
| 282 |
self.a0 + (xa @ self.a1) @ self.a2
|
| 283 |
) # a is "in-context learning rate"
|
| 284 |
if self.args.wkv_has_gate:
|
| 285 |
+
g = torch.sigmoid(xg @ self.g1) @ self.g2 + 1.0
|
| 286 |
kk = k * self.k_k
|
| 287 |
+
kk = F.normalize(kk.view(B, T, self.n_head, -1),
|
| 288 |
+
p=2.0, dim=-1, eps=1e-4 if kk.dtype == torch.float16 else 1e-12).view(B, T, C)
|
| 289 |
+
k = torch.lerp(k, k * a, self.k_a)
|
| 290 |
|
| 291 |
wkv_state = last_state.wkv_state
|
| 292 |
hidden_states, wkv_state = self.apply_wkv7_state(
|
|
|
|
| 298 |
(kk * a),
|
| 299 |
s=wkv_state,
|
| 300 |
output_final_state=use_cache,
|
| 301 |
+
cu_seqlens=cu_seqlens
|
|
|
|
| 302 |
)
|
| 303 |
if self.args.wkv_has_group_norm:
|
| 304 |
hidden_states = self.ln_x(
|
| 305 |
hidden_states.view(B * T, C)).view(B, T, C)
|
| 306 |
+
|
| 307 |
+
# original code:
|
| 308 |
+
# weighted_sum_rk = (r.view(B, T, self.n_head, -1) * k.view(B, T, self.n_head, -1) * self.r_k).sum(
|
| 309 |
+
# dim=-1, keepdim=True
|
| 310 |
+
# )
|
| 311 |
+
weighted_sum_rk = torch.einsum('btij,btij,ij->btij', r.view(B, T, self.n_head, -1),
|
| 312 |
+
k.view(B, T, self.n_head, -1), self.r_k).sum(dim=-1, keepdim=True)
|
| 313 |
+
hidden_states = hidden_states + \
|
| 314 |
+
(weighted_sum_rk * v.view(B, T, self.n_head, -1)).view(B, T, C)
|
| 315 |
hidden_states = self.output(
|
| 316 |
hidden_states * g) if self.args.wkv_has_gate else self.output(hidden_states)
|
| 317 |
+
return hidden_states, AttnState(lx, wkv_state), v_first
|
| 318 |
|
| 319 |
|
| 320 |
class Rwkv7Attention(nn.Module):
|
| 321 |
+
def __init__(self, args: RwkvHybridConfig, layer_id):
|
| 322 |
super().__init__()
|
| 323 |
self.args = args
|
| 324 |
self.layer_idx = layer_id
|
| 325 |
+
self.time_mixer = Rwkv_Tmix_x070(args, layer_id)
|
|
|
|
| 326 |
|
| 327 |
def forward(
|
| 328 |
self,
|
| 329 |
hidden_states: torch.Tensor,
|
| 330 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 331 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 332 |
+
past_key_value: Optional[HybridCache] = None,
|
| 333 |
output_attentions: Optional[bool] = False,
|
| 334 |
+
use_cache: Optional[bool] = False,
|
| 335 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 336 |
+
position_embeddings: Optional[torch.Tensor] = None,
|
| 337 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 338 |
+
v_first: Optional[torch.Tensor] = None,
|
| 339 |
**kwargs
|
| 340 |
):
|
| 341 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
batch_size, token_length, _ = hidden_states.shape
|
| 343 |
|
| 344 |
+
if use_cache and len(past_key_value) > self.layer_idx:
|
| 345 |
last_state = past_key_value[self.layer_idx][0]
|
| 346 |
else:
|
| 347 |
last_state = self.init_state(
|
| 348 |
batch_size, hidden_states.device, hidden_states.dtype
|
| 349 |
)
|
| 350 |
|
| 351 |
+
attn_output, states, v_first = self.time_mixer(hidden_states=hidden_states,
|
| 352 |
+
last_state=last_state.attn_state,
|
| 353 |
+
use_cache=use_cache,
|
| 354 |
+
cu_seqlens=cu_seqlens,
|
| 355 |
+
v_first=v_first,
|
| 356 |
+
**kwargs)
|
| 357 |
|
| 358 |
+
if use_cache:
|
| 359 |
+
last_state.attn_state = states
|
| 360 |
past_key_value.update(token_length, last_state, self.layer_idx)
|
| 361 |
|
| 362 |
+
return attn_output, None, v_first
|
| 363 |
|
| 364 |
def init_state(self, batch_size, device, dtype) -> BlockState:
|
| 365 |
wkv_states = torch.zeros(
|
|
|
|
| 372 |
device=device,
|
| 373 |
dtype=torch.float32,
|
| 374 |
)
|
| 375 |
+
shift_states = torch.zeros(
|
| 376 |
(batch_size, self.args.hidden_size), device=device, dtype=dtype
|
| 377 |
)
|
| 378 |
+
return BlockState(AttnState(shift_states, wkv_states), None)
|
| 379 |
|
| 380 |
|
| 381 |
class Rwkv_Tmix_x060(nn.Module):
|
|
|
|
| 388 |
self.head_size = args.head_size
|
| 389 |
self.n_head = args.num_wkv_heads
|
| 390 |
assert args.hidden_size % self.n_head == 0
|
|
|
|
|
|
|
| 391 |
|
| 392 |
with torch.no_grad():
|
| 393 |
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
|
|
|
|
| 451 |
|
| 452 |
self.time_faaaa = nn.Parameter(
|
| 453 |
tmp.reshape(self.n_head, self.head_size))
|
|
|
|
| 454 |
|
| 455 |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
| 456 |
self.receptance = nn.Linear(
|
|
|
|
| 470 |
def post_init(self):
|
| 471 |
pass
|
| 472 |
|
| 473 |
+
@compile_decorator
|
| 474 |
+
def forward(
|
| 475 |
+
self,
|
| 476 |
+
hidden_states,
|
| 477 |
+
last_state: AttnState,
|
| 478 |
+
use_cache: Optional[bool] = False,
|
| 479 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 480 |
+
v_first: Optional[torch.Tensor] = None,
|
| 481 |
+
**kwargs
|
| 482 |
+
):
|
| 483 |
shift_state = last_state.shift_state
|
| 484 |
+
B, T, C = hidden_states.size()
|
| 485 |
H = self.n_head
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
+
xx = torch.concat((shift_state.unsqueeze(
|
| 488 |
+
1), hidden_states[:, :-1]), dim=1) - hidden_states
|
| 489 |
+
|
| 490 |
+
lx = hidden_states[:, -1]
|
| 491 |
+
|
| 492 |
+
xxx = hidden_states + xx * self.time_maa_x
|
| 493 |
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B *
|
| 494 |
T, 5, -1).transpose(0, 1)
|
| 495 |
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
|
| 496 |
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
| 497 |
|
| 498 |
+
xw = hidden_states + xx * (self.time_maa_w + mw)
|
| 499 |
+
xk = hidden_states + xx * (self.time_maa_k + mk)
|
| 500 |
+
xv = hidden_states + xx * (self.time_maa_v + mv)
|
| 501 |
+
xr = hidden_states + xx * (self.time_maa_r + mr)
|
| 502 |
+
xg = hidden_states + xx * (self.time_maa_g + mg)
|
| 503 |
|
| 504 |
r = self.receptance(xr)
|
| 505 |
k = self.key(xk)
|
|
|
|
| 510 |
w = self.time_decay + ww
|
| 511 |
|
| 512 |
wkv_state = last_state.wkv_state
|
| 513 |
+
hidden_states, wkv_state = self.apply_wkv6_state(
|
| 514 |
B, T, C, H, r, k, v, w, u=self.time_faaaa, s=wkv_state
|
| 515 |
)
|
| 516 |
if self.args.wkv_has_group_norm:
|
| 517 |
+
hidden_states = self.ln_x(
|
| 518 |
+
hidden_states.view(B * T, C)).view(B, T, C)
|
| 519 |
+
hidden_states = self.output(hidden_states * g)
|
| 520 |
+
return hidden_states, AttnState(lx, wkv_state), None
|
| 521 |
|
| 522 |
def apply_wkv6_state(self, B, T, C, H, r, k, v, w, u, s):
|
| 523 |
+
r, w, k, v = map(lambda x: rearrange(
|
| 524 |
+
x, 'b l (h d) -> b h l d', h=self.n_head), (r, w, k, v))
|
| 525 |
|
| 526 |
if r.device.type == "cpu":
|
| 527 |
wkv6_func = native_recurrent_rwkv6
|
|
|
|
| 551 |
self.layer_idx = layer_id
|
| 552 |
self.time_mixer = Rwkv_Tmix_x060(args, layer_id, **kwargs)
|
| 553 |
|
| 554 |
+
def forward(
|
| 555 |
+
self,
|
| 556 |
+
hidden_states: torch.Tensor,
|
| 557 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 558 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 559 |
+
past_key_value: Optional[HybridCache] = None,
|
| 560 |
+
output_attentions: Optional[bool] = False,
|
| 561 |
+
use_cache: Optional[bool] = False,
|
| 562 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 563 |
+
position_embeddings: Optional[torch.Tensor] = None,
|
| 564 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 565 |
+
v_first: Optional[torch.Tensor] = None,
|
| 566 |
+
**kwargs
|
| 567 |
+
):
|
| 568 |
attn_output = hidden_states
|
| 569 |
+
|
| 570 |
+
batch_size, token_length, _ = hidden_states.shape
|
| 571 |
+
|
| 572 |
+
if use_cache and len(past_key_value) > self.layer_idx:
|
| 573 |
+
last_state = past_key_value[self.layer_idx][0]
|
| 574 |
+
else:
|
| 575 |
+
last_state = self.init_state(
|
| 576 |
+
batch_size, hidden_states.device, hidden_states.dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
)
|
| 578 |
+
|
| 579 |
+
attn_output, states, v_first = self.time_mixer(hidden_states=hidden_states,
|
| 580 |
+
last_state=last_state.attn_state,
|
| 581 |
+
use_cache=use_cache,
|
| 582 |
+
cu_seqlens=cu_seqlens,
|
| 583 |
+
v_first=v_first,
|
| 584 |
+
**kwargs)
|
| 585 |
+
|
| 586 |
+
if use_cache:
|
| 587 |
+
last_state.attn_state = states
|
| 588 |
+
past_key_value.update(token_length, last_state, self.layer_idx)
|
| 589 |
+
|
| 590 |
+
return attn_output, None, v_first
|
| 591 |
+
|
| 592 |
+
def init_state(self, batch_size, device, dtype) -> BlockState:
|
| 593 |
+
wkv_states = torch.zeros(
|
| 594 |
+
(
|
| 595 |
+
batch_size,
|
| 596 |
+
self.args.num_wkv_heads,
|
| 597 |
+
self.args.head_size,
|
| 598 |
+
self.args.head_size,
|
| 599 |
+
),
|
| 600 |
+
device=device,
|
| 601 |
+
dtype=torch.float32,
|
| 602 |
+
)
|
| 603 |
+
shift_states = torch.zeros(
|
| 604 |
+
(batch_size, self.args.hidden_size), device=device, dtype=dtype
|
| 605 |
+
)
|
| 606 |
+
return BlockState(AttnState(shift_states, wkv_states), None)
|