---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
license: llama3.1
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- neuralmagic
- redhat
- speculators
- eagle3
---
# Llama-3.1-8B-Instruct-speculator.eagle3
## Model Overview
- **Verifier:** meta-llama/Llama-3.1-8B-Instruct
- **Speculative Decoding Algorithm:** EAGLE-3
- **Model Architecture:** Eagle3Speculator
- **Release Date:** 07/27/2025
- **Version:** 1.0
- **Model Developers:** RedHat
This is a speculator model designed for use with [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct), based on the [EAGLE-3](https://arxiv.org/abs/2503.01840) speculative decoding algorithm.
It was trained using the [speculators](https://github.com/neuralmagic/speculators) library on a combination of the [Aeala/ShareGPT_Vicuna_unfiltered](https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered) and the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) datasets.
This model should be used with the [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) chat template, specifically through the `/chat/completions` endpoint.
## Use with vLLM
```bash
vllm serve meta-llama/Llama-3.1-8B-Instruct \
-tp 1 \
--speculative-config '{
"model": "RedHatAI/Llama-3.1-8B-Instruct-speculator.eagle3",
"num_speculative_tokens": 3,
"method": "eagle3"
}'
```
## Evaluations
Use cases
| Use Case |
Dataset |
Number of Samples |
| Coding |
HumanEval |
168 |
| Math Reasoning |
gsm8k |
80 |
| Text Summarization |
CNN/Daily Mail |
80 |
Acceptance lengths
| Use Case |
k=1 |
k=2 |
k=3 |
k=4 |
k=5 |
k=6 |
k=7 |
| Coding |
1.84 |
2.50 |
3.02 |
3.36 |
3.61 |
3.83 |
3.89 |
| Math Reasoning |
1.80 |
2.40 |
2.83 |
3.13 |
3.27 |
3.40 |
3.83 |
| Text Summarization |
1.70 |
2.19 |
2.50 |
2.78 |
2.77 |
2.98 |
2.99 |
Performance benchmarking (1xA100)
Details
Configuration
- temperature: 0.6
- top_p: 0.9
- repetitions: 5
- time per experiment: 3min
- hardware: 1xA100
- vLLM version: 0.11.0
- GuideLLM version: 0.3.0
Command
```bash
GUIDELLM__PREFERRED_ROUTE="chat_completions" \
guidellm benchmark \
--target "http://localhost:8000/v1" \
--data "RedHatAI/speculator_benchmarks" \
--data-args '{"data_files": "HumanEval.jsonl"}' \
--rate-type sweep \
--max-seconds 180 \
--output-path "Llama-3.1-8B-Instruct-HumanEval.json" \
--backend-args '{"extra_body": {"chat_completions": {"temperature":0.0}}}'