Update README.md
Browse files
README.md
CHANGED
|
@@ -33,7 +33,7 @@ base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
| 36 |
-
It achieves an average score of 73.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
@@ -117,11 +117,11 @@ model_stub = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
|
| 117 |
model_name = model_stub.split("/")[-1]
|
| 118 |
|
| 119 |
device_map = calculate_offload_device_map(
|
| 120 |
-
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype=
|
| 121 |
)
|
| 122 |
|
| 123 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
| 124 |
-
model_stub, torch_dtype=
|
| 125 |
)
|
| 126 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
| 127 |
|
|
@@ -171,7 +171,7 @@ oneshot(
|
|
| 171 |
|
| 172 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
| 173 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 174 |
-
This version of the lm-evaluation-harness includes versions of ARC-Challenge
|
| 175 |
|
| 176 |
### Accuracy
|
| 177 |
|
|
@@ -190,71 +190,81 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
| 190 |
<tr>
|
| 191 |
<td>MMLU (5-shot)
|
| 192 |
</td>
|
| 193 |
-
<td>67.
|
| 194 |
</td>
|
| 195 |
-
<td>
|
| 196 |
</td>
|
| 197 |
<td>100.0%
|
| 198 |
</td>
|
| 199 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
<tr>
|
| 201 |
<td>ARC Challenge (0-shot)
|
| 202 |
</td>
|
| 203 |
-
<td>
|
| 204 |
</td>
|
| 205 |
-
<td>
|
| 206 |
</td>
|
| 207 |
-
<td>
|
| 208 |
</td>
|
| 209 |
</tr>
|
| 210 |
<tr>
|
| 211 |
-
<td>GSM-8K (
|
| 212 |
</td>
|
| 213 |
-
<td>
|
| 214 |
</td>
|
| 215 |
-
<td>81.
|
| 216 |
</td>
|
| 217 |
-
<td>
|
| 218 |
</td>
|
| 219 |
</tr>
|
| 220 |
<tr>
|
| 221 |
<td>Hellaswag (10-shot)
|
| 222 |
</td>
|
| 223 |
-
<td>80.
|
| 224 |
</td>
|
| 225 |
-
<td>
|
| 226 |
</td>
|
| 227 |
-
<td>99.
|
| 228 |
</td>
|
| 229 |
</tr>
|
| 230 |
<tr>
|
| 231 |
<td>Winogrande (5-shot)
|
| 232 |
</td>
|
| 233 |
-
<td>
|
| 234 |
</td>
|
| 235 |
-
<td>77.
|
| 236 |
</td>
|
| 237 |
-
<td>99.
|
| 238 |
</td>
|
| 239 |
</tr>
|
| 240 |
<tr>
|
| 241 |
<td>TruthfulQA (0-shot, mc2)
|
| 242 |
</td>
|
| 243 |
-
<td>54.
|
| 244 |
</td>
|
| 245 |
-
<td>
|
| 246 |
</td>
|
| 247 |
-
<td>
|
| 248 |
</td>
|
| 249 |
</tr>
|
| 250 |
<tr>
|
| 251 |
<td><strong>Average</strong>
|
| 252 |
</td>
|
| 253 |
-
<td><strong>
|
| 254 |
</td>
|
| 255 |
-
<td><strong>73.
|
| 256 |
</td>
|
| 257 |
-
<td><strong>99.
|
| 258 |
</td>
|
| 259 |
</tr>
|
| 260 |
</table>
|
|
@@ -273,6 +283,17 @@ lm_eval \
|
|
| 273 |
--batch_size auto
|
| 274 |
```
|
| 275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
#### ARC-Challenge
|
| 277 |
```
|
| 278 |
lm_eval \
|
|
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
| 36 |
+
It achieves an average score of 73.44 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.79.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
|
|
| 117 |
model_name = model_stub.split("/")[-1]
|
| 118 |
|
| 119 |
device_map = calculate_offload_device_map(
|
| 120 |
+
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto"
|
| 121 |
)
|
| 122 |
|
| 123 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
| 124 |
+
model_stub, torch_dtype="auto", device_map=device_map
|
| 125 |
)
|
| 126 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
| 127 |
|
|
|
|
| 171 |
|
| 172 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
| 173 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 174 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, MMLU, and MMLU-cot that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
| 175 |
|
| 176 |
### Accuracy
|
| 177 |
|
|
|
|
| 190 |
<tr>
|
| 191 |
<td>MMLU (5-shot)
|
| 192 |
</td>
|
| 193 |
+
<td>67.95
|
| 194 |
</td>
|
| 195 |
+
<td>67.97
|
| 196 |
</td>
|
| 197 |
<td>100.0%
|
| 198 |
</td>
|
| 199 |
</tr>
|
| 200 |
+
<tr>
|
| 201 |
+
<td>MMLU-cot (0-shot)
|
| 202 |
+
</td>
|
| 203 |
+
<td>71.24
|
| 204 |
+
</td>
|
| 205 |
+
<td>71.12
|
| 206 |
+
</td>
|
| 207 |
+
<td>99.83%
|
| 208 |
+
</td>
|
| 209 |
+
</tr>
|
| 210 |
<tr>
|
| 211 |
<td>ARC Challenge (0-shot)
|
| 212 |
</td>
|
| 213 |
+
<td>82.00
|
| 214 |
</td>
|
| 215 |
+
<td>81.66
|
| 216 |
</td>
|
| 217 |
+
<td>99.59%
|
| 218 |
</td>
|
| 219 |
</tr>
|
| 220 |
<tr>
|
| 221 |
+
<td>GSM-8K-cot (8-shot, strict-match)
|
| 222 |
</td>
|
| 223 |
+
<td>81.96
|
| 224 |
</td>
|
| 225 |
+
<td>81.12
|
| 226 |
</td>
|
| 227 |
+
<td>98.98%
|
| 228 |
</td>
|
| 229 |
</tr>
|
| 230 |
<tr>
|
| 231 |
<td>Hellaswag (10-shot)
|
| 232 |
</td>
|
| 233 |
+
<td>80.46
|
| 234 |
</td>
|
| 235 |
+
<td>80.4
|
| 236 |
</td>
|
| 237 |
+
<td>99.93%
|
| 238 |
</td>
|
| 239 |
</tr>
|
| 240 |
<tr>
|
| 241 |
<td>Winogrande (5-shot)
|
| 242 |
</td>
|
| 243 |
+
<td>78.45
|
| 244 |
</td>
|
| 245 |
+
<td>77.90
|
| 246 |
</td>
|
| 247 |
+
<td>99.30%
|
| 248 |
</td>
|
| 249 |
</tr>
|
| 250 |
<tr>
|
| 251 |
<td>TruthfulQA (0-shot, mc2)
|
| 252 |
</td>
|
| 253 |
+
<td>54.50
|
| 254 |
</td>
|
| 255 |
+
<td>53.92
|
| 256 |
</td>
|
| 257 |
+
<td>98.94%
|
| 258 |
</td>
|
| 259 |
</tr>
|
| 260 |
<tr>
|
| 261 |
<td><strong>Average</strong>
|
| 262 |
</td>
|
| 263 |
+
<td><strong>73.79</strong>
|
| 264 |
</td>
|
| 265 |
+
<td><strong>73.44</strong>
|
| 266 |
</td>
|
| 267 |
+
<td><strong>99.52%</strong>
|
| 268 |
</td>
|
| 269 |
</tr>
|
| 270 |
</table>
|
|
|
|
| 283 |
--batch_size auto
|
| 284 |
```
|
| 285 |
|
| 286 |
+
#### MMLU-cot
|
| 287 |
+
```
|
| 288 |
+
lm_eval \
|
| 289 |
+
--model vllm \
|
| 290 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
| 291 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 292 |
+
--apply_chat_template \
|
| 293 |
+
--num_fewshot 0 \
|
| 294 |
+
--batch_size auto
|
| 295 |
+
```
|
| 296 |
+
|
| 297 |
#### ARC-Challenge
|
| 298 |
```
|
| 299 |
lm_eval \
|