Remonatef commited on
Commit
f52e717
·
verified ·
1 Parent(s): 59d2173

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1051 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:9172937
11
+ - loss:CoSENTLoss
12
+ base_model: sentence-transformers/all-MiniLM-L6-v2
13
+ widget:
14
+ - source_sentence: unpaid therapist with a built in lie detector mug
15
+ sentences:
16
+ - dream and goal sticky notes
17
+ - mini croissant
18
+ - frozen peanut butter cookies
19
+ - source_sentence: and
20
+ sentences:
21
+ - emmental cheese soup
22
+ - ball with good grip
23
+ - swimming remote control car
24
+ - source_sentence: handle mug
25
+ sentences:
26
+ - oversized fit tshirt
27
+ - valentine brownie
28
+ - aloe eva hair oil replacement
29
+ - source_sentence: healthy food
30
+ sentences:
31
+ - beef brisket salad
32
+ - hdrawn swim shorts
33
+ - nox balls
34
+ - source_sentence: deluxe mug for morning coffee
35
+ sentences:
36
+ - comfort pants
37
+ - cheddar cheese burrito
38
+ - polyfibre scarf
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ ---
42
+
43
+ # all-MiniLM-L6-v8-pair_score
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
52
+ - **Maximum Sequence Length:** 256 tokens
53
+ - **Output Dimensionality:** 384 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ - **Language:** en
57
+ - **License:** apache-2.0
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ (2): Normalize()
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("sentence_transformers_model_id")
91
+ # Run inference
92
+ sentences = [
93
+ 'deluxe mug for morning coffee',
94
+ 'polyfibre scarf',
95
+ 'cheddar cheese burrito',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 384]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Hyperparameters
146
+ #### Non-Default Hyperparameters
147
+
148
+ - `eval_strategy`: steps
149
+ - `per_device_train_batch_size`: 128
150
+ - `per_device_eval_batch_size`: 128
151
+ - `learning_rate`: 2e-05
152
+ - `num_train_epochs`: 1
153
+ - `warmup_ratio`: 0.1
154
+ - `fp16`: True
155
+
156
+ #### All Hyperparameters
157
+ <details><summary>Click to expand</summary>
158
+
159
+ - `overwrite_output_dir`: False
160
+ - `do_predict`: False
161
+ - `eval_strategy`: steps
162
+ - `prediction_loss_only`: True
163
+ - `per_device_train_batch_size`: 128
164
+ - `per_device_eval_batch_size`: 128
165
+ - `per_gpu_train_batch_size`: None
166
+ - `per_gpu_eval_batch_size`: None
167
+ - `gradient_accumulation_steps`: 1
168
+ - `eval_accumulation_steps`: None
169
+ - `torch_empty_cache_steps`: None
170
+ - `learning_rate`: 2e-05
171
+ - `weight_decay`: 0.0
172
+ - `adam_beta1`: 0.9
173
+ - `adam_beta2`: 0.999
174
+ - `adam_epsilon`: 1e-08
175
+ - `max_grad_norm`: 1.0
176
+ - `num_train_epochs`: 1
177
+ - `max_steps`: -1
178
+ - `lr_scheduler_type`: linear
179
+ - `lr_scheduler_kwargs`: {}
180
+ - `warmup_ratio`: 0.1
181
+ - `warmup_steps`: 0
182
+ - `log_level`: passive
183
+ - `log_level_replica`: warning
184
+ - `log_on_each_node`: True
185
+ - `logging_nan_inf_filter`: True
186
+ - `save_safetensors`: True
187
+ - `save_on_each_node`: False
188
+ - `save_only_model`: False
189
+ - `restore_callback_states_from_checkpoint`: False
190
+ - `no_cuda`: False
191
+ - `use_cpu`: False
192
+ - `use_mps_device`: False
193
+ - `seed`: 42
194
+ - `data_seed`: None
195
+ - `jit_mode_eval`: False
196
+ - `use_ipex`: False
197
+ - `bf16`: False
198
+ - `fp16`: True
199
+ - `fp16_opt_level`: O1
200
+ - `half_precision_backend`: auto
201
+ - `bf16_full_eval`: False
202
+ - `fp16_full_eval`: False
203
+ - `tf32`: None
204
+ - `local_rank`: 0
205
+ - `ddp_backend`: None
206
+ - `tpu_num_cores`: None
207
+ - `tpu_metrics_debug`: False
208
+ - `debug`: []
209
+ - `dataloader_drop_last`: False
210
+ - `dataloader_num_workers`: 0
211
+ - `dataloader_prefetch_factor`: None
212
+ - `past_index`: -1
213
+ - `disable_tqdm`: False
214
+ - `remove_unused_columns`: True
215
+ - `label_names`: None
216
+ - `load_best_model_at_end`: False
217
+ - `ignore_data_skip`: False
218
+ - `fsdp`: []
219
+ - `fsdp_min_num_params`: 0
220
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
221
+ - `fsdp_transformer_layer_cls_to_wrap`: None
222
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
223
+ - `deepspeed`: None
224
+ - `label_smoothing_factor`: 0.0
225
+ - `optim`: adamw_torch
226
+ - `optim_args`: None
227
+ - `adafactor`: False
228
+ - `group_by_length`: False
229
+ - `length_column_name`: length
230
+ - `ddp_find_unused_parameters`: None
231
+ - `ddp_bucket_cap_mb`: None
232
+ - `ddp_broadcast_buffers`: False
233
+ - `dataloader_pin_memory`: True
234
+ - `dataloader_persistent_workers`: False
235
+ - `skip_memory_metrics`: True
236
+ - `use_legacy_prediction_loop`: False
237
+ - `push_to_hub`: False
238
+ - `resume_from_checkpoint`: None
239
+ - `hub_model_id`: None
240
+ - `hub_strategy`: every_save
241
+ - `hub_private_repo`: False
242
+ - `hub_always_push`: False
243
+ - `gradient_checkpointing`: False
244
+ - `gradient_checkpointing_kwargs`: None
245
+ - `include_inputs_for_metrics`: False
246
+ - `eval_do_concat_batches`: True
247
+ - `fp16_backend`: auto
248
+ - `push_to_hub_model_id`: None
249
+ - `push_to_hub_organization`: None
250
+ - `mp_parameters`:
251
+ - `auto_find_batch_size`: False
252
+ - `full_determinism`: False
253
+ - `torchdynamo`: None
254
+ - `ray_scope`: last
255
+ - `ddp_timeout`: 1800
256
+ - `torch_compile`: False
257
+ - `torch_compile_backend`: None
258
+ - `torch_compile_mode`: None
259
+ - `dispatch_batches`: None
260
+ - `split_batches`: None
261
+ - `include_tokens_per_second`: False
262
+ - `include_num_input_tokens_seen`: False
263
+ - `neftune_noise_alpha`: None
264
+ - `optim_target_modules`: None
265
+ - `batch_eval_metrics`: False
266
+ - `eval_on_start`: False
267
+ - `use_liger_kernel`: False
268
+ - `eval_use_gather_object`: False
269
+ - `batch_sampler`: batch_sampler
270
+ - `multi_dataset_batch_sampler`: proportional
271
+
272
+ </details>
273
+
274
+ ### Training Logs
275
+ <details><summary>Click to expand</summary>
276
+
277
+ | Epoch | Step | Training Loss |
278
+ |:------:|:-----:|:-------------:|
279
+ | 0.0014 | 100 | 11.4553 |
280
+ | 0.0028 | 200 | 11.5147 |
281
+ | 0.0042 | 300 | 11.1304 |
282
+ | 0.0056 | 400 | 10.7925 |
283
+ | 0.0070 | 500 | 10.4493 |
284
+ | 0.0084 | 600 | 10.2631 |
285
+ | 0.0098 | 700 | 9.987 |
286
+ | 0.0112 | 800 | 9.8477 |
287
+ | 0.0126 | 900 | 9.6295 |
288
+ | 0.0140 | 1000 | 9.3638 |
289
+ | 0.0153 | 1100 | 9.1913 |
290
+ | 0.0167 | 1200 | 8.9688 |
291
+ | 0.0181 | 1300 | 8.808 |
292
+ | 0.0195 | 1400 | 8.6993 |
293
+ | 0.0209 | 1500 | 8.6078 |
294
+ | 0.0223 | 1600 | 8.5739 |
295
+ | 0.0237 | 1700 | 8.5575 |
296
+ | 0.0251 | 1800 | 8.5173 |
297
+ | 0.0265 | 1900 | 8.4983 |
298
+ | 0.0279 | 2000 | 8.4662 |
299
+ | 0.0293 | 2100 | 8.4408 |
300
+ | 0.0307 | 2200 | 8.4136 |
301
+ | 0.0321 | 2300 | 8.4002 |
302
+ | 0.0335 | 2400 | 8.3883 |
303
+ | 0.0349 | 2500 | 8.3785 |
304
+ | 0.0363 | 2600 | 8.3458 |
305
+ | 0.0377 | 2700 | 8.3617 |
306
+ | 0.0391 | 2800 | 8.3338 |
307
+ | 0.0405 | 2900 | 8.3281 |
308
+ | 0.0419 | 3000 | 8.3043 |
309
+ | 0.0433 | 3100 | 8.3087 |
310
+ | 0.0447 | 3200 | 8.2913 |
311
+ | 0.0460 | 3300 | 8.2854 |
312
+ | 0.0474 | 3400 | 8.2408 |
313
+ | 0.0488 | 3500 | 8.2628 |
314
+ | 0.0502 | 3600 | 8.2401 |
315
+ | 0.0516 | 3700 | 8.2538 |
316
+ | 0.0530 | 3800 | 8.2103 |
317
+ | 0.0544 | 3900 | 8.2221 |
318
+ | 0.0558 | 4000 | 8.2248 |
319
+ | 0.0572 | 4100 | 8.2045 |
320
+ | 0.0586 | 4200 | 8.2008 |
321
+ | 0.0600 | 4300 | 8.196 |
322
+ | 0.0614 | 4400 | 8.1757 |
323
+ | 0.0628 | 4500 | 8.1845 |
324
+ | 0.0642 | 4600 | 8.1714 |
325
+ | 0.0656 | 4700 | 8.1745 |
326
+ | 0.0670 | 4800 | 8.1702 |
327
+ | 0.0684 | 4900 | 8.1767 |
328
+ | 0.0698 | 5000 | 8.1379 |
329
+ | 0.0712 | 5100 | 8.1473 |
330
+ | 0.0726 | 5200 | 8.1443 |
331
+ | 0.0740 | 5300 | 8.1173 |
332
+ | 0.0754 | 5400 | 8.121 |
333
+ | 0.0767 | 5500 | 8.136 |
334
+ | 0.0781 | 5600 | 8.1246 |
335
+ | 0.0795 | 5700 | 8.0983 |
336
+ | 0.0809 | 5800 | 8.1023 |
337
+ | 0.0823 | 5900 | 8.1013 |
338
+ | 0.0837 | 6000 | 8.0657 |
339
+ | 0.0851 | 6100 | 8.0998 |
340
+ | 0.0865 | 6200 | 8.0585 |
341
+ | 0.0879 | 6300 | 8.1082 |
342
+ | 0.0893 | 6400 | 8.0652 |
343
+ | 0.0907 | 6500 | 8.0808 |
344
+ | 0.0921 | 6600 | 8.0756 |
345
+ | 0.0935 | 6700 | 8.0279 |
346
+ | 0.0949 | 6800 | 8.0659 |
347
+ | 0.0963 | 6900 | 8.0428 |
348
+ | 0.0977 | 7000 | 8.0363 |
349
+ | 0.0991 | 7100 | 8.0343 |
350
+ | 0.1005 | 7200 | 8.0488 |
351
+ | 0.1019 | 7300 | 8.0225 |
352
+ | 0.1033 | 7400 | 8.0203 |
353
+ | 0.1047 | 7500 | 8.0248 |
354
+ | 0.1061 | 7600 | 7.9882 |
355
+ | 0.1074 | 7700 | 7.9956 |
356
+ | 0.1088 | 7800 | 8.0338 |
357
+ | 0.1102 | 7900 | 7.9827 |
358
+ | 0.1116 | 8000 | 7.9849 |
359
+ | 0.1130 | 8100 | 8.0072 |
360
+ | 0.1144 | 8200 | 7.9708 |
361
+ | 0.1158 | 8300 | 7.9786 |
362
+ | 0.1172 | 8400 | 7.9983 |
363
+ | 0.1186 | 8500 | 7.9762 |
364
+ | 0.1200 | 8600 | 7.9955 |
365
+ | 0.1214 | 8700 | 7.9969 |
366
+ | 0.1228 | 8800 | 7.9913 |
367
+ | 0.1242 | 8900 | 7.9512 |
368
+ | 0.1256 | 9000 | 7.9672 |
369
+ | 0.1270 | 9100 | 7.9853 |
370
+ | 0.1284 | 9200 | 7.9626 |
371
+ | 0.1298 | 9300 | 7.9767 |
372
+ | 0.1312 | 9400 | 7.9404 |
373
+ | 0.1326 | 9500 | 7.9076 |
374
+ | 0.1340 | 9600 | 7.968 |
375
+ | 0.1354 | 9700 | 7.9432 |
376
+ | 0.1367 | 9800 | 7.9255 |
377
+ | 0.1381 | 9900 | 7.9095 |
378
+ | 0.1395 | 10000 | 7.9337 |
379
+ | 0.1409 | 10100 | 7.9464 |
380
+ | 0.1423 | 10200 | 7.9218 |
381
+ | 0.1437 | 10300 | 7.9102 |
382
+ | 0.1451 | 10400 | 7.9379 |
383
+ | 0.1465 | 10500 | 7.8907 |
384
+ | 0.1479 | 10600 | 7.8968 |
385
+ | 0.1493 | 10700 | 7.9193 |
386
+ | 0.1507 | 10800 | 7.9327 |
387
+ | 0.1521 | 10900 | 7.896 |
388
+ | 0.1535 | 11000 | 7.9228 |
389
+ | 0.1549 | 11100 | 7.9253 |
390
+ | 0.1563 | 11200 | 7.8825 |
391
+ | 0.1577 | 11300 | 7.8812 |
392
+ | 0.1591 | 11400 | 7.8883 |
393
+ | 0.1605 | 11500 | 7.8721 |
394
+ | 0.1619 | 11600 | 7.9218 |
395
+ | 0.1633 | 11700 | 7.8893 |
396
+ | 0.1647 | 11800 | 7.8961 |
397
+ | 0.1661 | 11900 | 7.8647 |
398
+ | 0.1674 | 12000 | 7.89 |
399
+ | 0.1688 | 12100 | 7.8422 |
400
+ | 0.1702 | 12200 | 7.9348 |
401
+ | 0.1716 | 12300 | 7.8808 |
402
+ | 0.1730 | 12400 | 7.8788 |
403
+ | 0.1744 | 12500 | 7.8794 |
404
+ | 0.1758 | 12600 | 7.848 |
405
+ | 0.1772 | 12700 | 7.8279 |
406
+ | 0.1786 | 12800 | 7.8655 |
407
+ | 0.1800 | 12900 | 7.8612 |
408
+ | 0.1814 | 13000 | 7.828 |
409
+ | 0.1828 | 13100 | 7.8419 |
410
+ | 0.1842 | 13200 | 7.8574 |
411
+ | 0.1856 | 13300 | 7.8688 |
412
+ | 0.1870 | 13400 | 7.8408 |
413
+ | 0.1884 | 13500 | 7.8172 |
414
+ | 0.1898 | 13600 | 7.8579 |
415
+ | 0.1912 | 13700 | 7.8392 |
416
+ | 0.1926 | 13800 | 7.849 |
417
+ | 0.1940 | 13900 | 7.8485 |
418
+ | 0.1954 | 14000 | 7.861 |
419
+ | 0.1968 | 14100 | 7.8257 |
420
+ | 0.1981 | 14200 | 7.8647 |
421
+ | 0.1995 | 14300 | 7.857 |
422
+ | 0.2009 | 14400 | 7.8031 |
423
+ | 0.2023 | 14500 | 7.8498 |
424
+ | 0.2037 | 14600 | 7.8175 |
425
+ | 0.2051 | 14700 | 7.8474 |
426
+ | 0.2065 | 14800 | 7.8158 |
427
+ | 0.2079 | 14900 | 7.7777 |
428
+ | 0.2093 | 15000 | 7.8362 |
429
+ | 0.2107 | 15100 | 7.8387 |
430
+ | 0.2121 | 15200 | 7.8225 |
431
+ | 0.2135 | 15300 | 7.8627 |
432
+ | 0.2149 | 15400 | 7.8543 |
433
+ | 0.2163 | 15500 | 7.8096 |
434
+ | 0.2177 | 15600 | 7.8201 |
435
+ | 0.2191 | 15700 | 7.8178 |
436
+ | 0.2205 | 15800 | 7.8138 |
437
+ | 0.2219 | 15900 | 7.8384 |
438
+ | 0.2233 | 16000 | 7.7811 |
439
+ | 0.2247 | 16100 | 7.82 |
440
+ | 0.2261 | 16200 | 7.7731 |
441
+ | 0.2275 | 16300 | 7.8508 |
442
+ | 0.2288 | 16400 | 7.8087 |
443
+ | 0.2302 | 16500 | 7.7959 |
444
+ | 0.2316 | 16600 | 7.7857 |
445
+ | 0.2330 | 16700 | 7.7946 |
446
+ | 0.2344 | 16800 | 7.7884 |
447
+ | 0.2358 | 16900 | 7.8226 |
448
+ | 0.2372 | 17000 | 7.7811 |
449
+ | 0.2386 | 17100 | 7.778 |
450
+ | 0.2400 | 17200 | 7.7825 |
451
+ | 0.2414 | 17300 | 7.782 |
452
+ | 0.2428 | 17400 | 7.8164 |
453
+ | 0.2442 | 17500 | 7.7514 |
454
+ | 0.2456 | 17600 | 7.7744 |
455
+ | 0.2470 | 17700 | 7.7974 |
456
+ | 0.2484 | 17800 | 7.7913 |
457
+ | 0.2498 | 17900 | 7.757 |
458
+ | 0.2512 | 18000 | 7.7724 |
459
+ | 0.2526 | 18100 | 7.7772 |
460
+ | 0.2540 | 18200 | 7.7723 |
461
+ | 0.2554 | 18300 | 7.753 |
462
+ | 0.2568 | 18400 | 7.8055 |
463
+ | 0.2581 | 18500 | 7.7878 |
464
+ | 0.2595 | 18600 | 7.7822 |
465
+ | 0.2609 | 18700 | 7.7923 |
466
+ | 0.2623 | 18800 | 7.8378 |
467
+ | 0.2637 | 18900 | 7.8226 |
468
+ | 0.2651 | 19000 | 7.8015 |
469
+ | 0.2665 | 19100 | 7.7355 |
470
+ | 0.2679 | 19200 | 7.789 |
471
+ | 0.2693 | 19300 | 7.7473 |
472
+ | 0.2707 | 19400 | 7.7521 |
473
+ | 0.2721 | 19500 | 7.7867 |
474
+ | 0.2735 | 19600 | 7.7597 |
475
+ | 0.2749 | 19700 | 7.7506 |
476
+ | 0.2763 | 19800 | 7.732 |
477
+ | 0.2777 | 19900 | 7.7288 |
478
+ | 0.2791 | 20000 | 7.7317 |
479
+ | 0.2805 | 20100 | 7.7495 |
480
+ | 0.2819 | 20200 | 7.7236 |
481
+ | 0.2833 | 20300 | 7.7489 |
482
+ | 0.2847 | 20400 | 7.7592 |
483
+ | 0.2861 | 20500 | 7.7455 |
484
+ | 0.2875 | 20600 | 7.7623 |
485
+ | 0.2888 | 20700 | 7.7774 |
486
+ | 0.2902 | 20800 | 7.7485 |
487
+ | 0.2916 | 20900 | 7.7043 |
488
+ | 0.2930 | 21000 | 7.8039 |
489
+ | 0.2944 | 21100 | 7.7383 |
490
+ | 0.2958 | 21200 | 7.759 |
491
+ | 0.2972 | 21300 | 7.7362 |
492
+ | 0.2986 | 21400 | 7.7788 |
493
+ | 0.3000 | 21500 | 7.7244 |
494
+ | 0.3014 | 21600 | 7.72 |
495
+ | 0.3028 | 21700 | 7.7453 |
496
+ | 0.3042 | 21800 | 7.729 |
497
+ | 0.3056 | 21900 | 7.7735 |
498
+ | 0.3070 | 22000 | 7.7185 |
499
+ | 0.3084 | 22100 | 7.7641 |
500
+ | 0.3098 | 22200 | 7.7293 |
501
+ | 0.3112 | 22300 | 7.7401 |
502
+ | 0.3126 | 22400 | 7.725 |
503
+ | 0.3140 | 22500 | 7.7315 |
504
+ | 0.3154 | 22600 | 7.716 |
505
+ | 0.3168 | 22700 | 7.7576 |
506
+ | 0.3182 | 22800 | 7.7088 |
507
+ | 0.3195 | 22900 | 7.7428 |
508
+ | 0.3209 | 23000 | 7.7266 |
509
+ | 0.3223 | 23100 | 7.7246 |
510
+ | 0.3237 | 23200 | 7.7084 |
511
+ | 0.3251 | 23300 | 7.7094 |
512
+ | 0.3265 | 23400 | 7.7081 |
513
+ | 0.3279 | 23500 | 7.7472 |
514
+ | 0.3293 | 23600 | 7.7581 |
515
+ | 0.3307 | 23700 | 7.7264 |
516
+ | 0.3321 | 23800 | 7.7262 |
517
+ | 0.3335 | 23900 | 7.7252 |
518
+ | 0.3349 | 24000 | 7.7219 |
519
+ | 0.3363 | 24100 | 7.706 |
520
+ | 0.3377 | 24200 | 7.7372 |
521
+ | 0.3391 | 24300 | 7.6965 |
522
+ | 0.3405 | 24400 | 7.6865 |
523
+ | 0.3419 | 24500 | 7.6798 |
524
+ | 0.3433 | 24600 | 7.6962 |
525
+ | 0.3447 | 24700 | 7.701 |
526
+ | 0.3461 | 24800 | 7.6722 |
527
+ | 0.3475 | 24900 | 7.7453 |
528
+ | 0.3489 | 25000 | 7.6463 |
529
+ | 0.3502 | 25100 | 7.7256 |
530
+ | 0.3516 | 25200 | 7.693 |
531
+ | 0.3530 | 25300 | 7.7306 |
532
+ | 0.3544 | 25400 | 7.7037 |
533
+ | 0.3558 | 25500 | 7.6733 |
534
+ | 0.3572 | 25600 | 7.7202 |
535
+ | 0.3586 | 25700 | 7.6866 |
536
+ | 0.3600 | 25800 | 7.715 |
537
+ | 0.3614 | 25900 | 7.6925 |
538
+ | 0.3628 | 26000 | 7.6961 |
539
+ | 0.3642 | 26100 | 7.6752 |
540
+ | 0.3656 | 26200 | 7.7377 |
541
+ | 0.3670 | 26300 | 7.6744 |
542
+ | 0.3684 | 26400 | 7.6698 |
543
+ | 0.3698 | 26500 | 7.6931 |
544
+ | 0.3712 | 26600 | 7.6789 |
545
+ | 0.3726 | 26700 | 7.6736 |
546
+ | 0.3740 | 26800 | 7.6918 |
547
+ | 0.3754 | 26900 | 7.7129 |
548
+ | 0.3768 | 27000 | 7.7179 |
549
+ | 0.3782 | 27100 | 7.6747 |
550
+ | 0.3795 | 27200 | 7.6809 |
551
+ | 0.3809 | 27300 | 7.6803 |
552
+ | 0.3823 | 27400 | 7.6777 |
553
+ | 0.3837 | 27500 | 7.6702 |
554
+ | 0.3851 | 27600 | 7.7005 |
555
+ | 0.3865 | 27700 | 7.6671 |
556
+ | 0.3879 | 27800 | 7.6873 |
557
+ | 0.3893 | 27900 | 7.6919 |
558
+ | 0.3907 | 28000 | 7.6987 |
559
+ | 0.3921 | 28100 | 7.6641 |
560
+ | 0.3935 | 28200 | 7.6449 |
561
+ | 0.3949 | 28300 | 7.6715 |
562
+ | 0.3963 | 28400 | 7.6672 |
563
+ | 0.3977 | 28500 | 7.6796 |
564
+ | 0.3991 | 28600 | 7.7085 |
565
+ | 0.4005 | 28700 | 7.6557 |
566
+ | 0.4019 | 28800 | 7.6592 |
567
+ | 0.4033 | 28900 | 7.6695 |
568
+ | 0.4047 | 29000 | 7.6734 |
569
+ | 0.4061 | 29100 | 7.6499 |
570
+ | 0.4075 | 29200 | 7.6472 |
571
+ | 0.4089 | 29300 | 7.6705 |
572
+ | 0.4102 | 29400 | 7.6856 |
573
+ | 0.4116 | 29500 | 7.6474 |
574
+ | 0.4130 | 29600 | 7.6581 |
575
+ | 0.4144 | 29700 | 7.6699 |
576
+ | 0.4158 | 29800 | 7.6693 |
577
+ | 0.4172 | 29900 | 7.6716 |
578
+ | 0.4186 | 30000 | 7.6594 |
579
+ | 0.4200 | 30100 | 7.6391 |
580
+ | 0.4214 | 30200 | 7.6758 |
581
+ | 0.4228 | 30300 | 7.652 |
582
+ | 0.4242 | 30400 | 7.6312 |
583
+ | 0.4256 | 30500 | 7.6538 |
584
+ | 0.4270 | 30600 | 7.6959 |
585
+ | 0.4284 | 30700 | 7.7324 |
586
+ | 0.4298 | 30800 | 7.6529 |
587
+ | 0.4312 | 30900 | 7.6528 |
588
+ | 0.4326 | 31000 | 7.7036 |
589
+ | 0.4340 | 31100 | 7.6794 |
590
+ | 0.4354 | 31200 | 7.6603 |
591
+ | 0.4368 | 31300 | 7.6372 |
592
+ | 0.4382 | 31400 | 7.6427 |
593
+ | 0.4396 | 31500 | 7.6852 |
594
+ | 0.4409 | 31600 | 7.6987 |
595
+ | 0.4423 | 31700 | 7.6385 |
596
+ | 0.4437 | 31800 | 7.701 |
597
+ | 0.4451 | 31900 | 7.6702 |
598
+ | 0.4465 | 32000 | 7.6551 |
599
+ | 0.4479 | 32100 | 7.6464 |
600
+ | 0.4493 | 32200 | 7.667 |
601
+ | 0.4507 | 32300 | 7.628 |
602
+ | 0.4521 | 32400 | 7.7012 |
603
+ | 0.4535 | 32500 | 7.6333 |
604
+ | 0.4549 | 32600 | 7.6707 |
605
+ | 0.4563 | 32700 | 7.6304 |
606
+ | 0.4577 | 32800 | 7.6719 |
607
+ | 0.4591 | 32900 | 7.6744 |
608
+ | 0.4605 | 33000 | 7.7102 |
609
+ | 0.4619 | 33100 | 7.6918 |
610
+ | 0.4633 | 33200 | 7.7018 |
611
+ | 0.4647 | 33300 | 7.6131 |
612
+ | 0.4661 | 33400 | 7.6476 |
613
+ | 0.4675 | 33500 | 7.6594 |
614
+ | 0.4689 | 33600 | 7.6301 |
615
+ | 0.4703 | 33700 | 7.6134 |
616
+ | 0.4716 | 33800 | 7.7383 |
617
+ | 0.4730 | 33900 | 7.6253 |
618
+ | 0.4744 | 34000 | 7.662 |
619
+ | 0.4758 | 34100 | 7.6341 |
620
+ | 0.4772 | 34200 | 7.6622 |
621
+ | 0.4786 | 34300 | 7.6429 |
622
+ | 0.4800 | 34400 | 7.6777 |
623
+ | 0.4814 | 34500 | 7.6089 |
624
+ | 0.4828 | 34600 | 7.6382 |
625
+ | 0.4842 | 34700 | 7.6324 |
626
+ | 0.4856 | 34800 | 7.6176 |
627
+ | 0.4870 | 34900 | 7.624 |
628
+ | 0.4884 | 35000 | 7.6163 |
629
+ | 0.4898 | 35100 | 7.6503 |
630
+ | 0.4912 | 35200 | 7.6609 |
631
+ | 0.4926 | 35300 | 7.6587 |
632
+ | 0.4940 | 35400 | 7.5999 |
633
+ | 0.4954 | 35500 | 7.586 |
634
+ | 0.4968 | 35600 | 7.6585 |
635
+ | 0.4982 | 35700 | 7.7349 |
636
+ | 0.4996 | 35800 | 7.642 |
637
+ | 0.5009 | 35900 | 7.646 |
638
+ | 0.5023 | 36000 | 7.5942 |
639
+ | 0.5037 | 36100 | 7.6477 |
640
+ | 0.5051 | 36200 | 7.6259 |
641
+ | 0.5065 | 36300 | 7.5926 |
642
+ | 0.5079 | 36400 | 7.6166 |
643
+ | 0.5093 | 36500 | 7.6323 |
644
+ | 0.5107 | 36600 | 7.6324 |
645
+ | 0.5121 | 36700 | 7.6411 |
646
+ | 0.5135 | 36800 | 7.6343 |
647
+ | 0.5149 | 36900 | 7.6313 |
648
+ | 0.5163 | 37000 | 7.6187 |
649
+ | 0.5177 | 37100 | 7.6545 |
650
+ | 0.5191 | 37200 | 7.6555 |
651
+ | 0.5205 | 37300 | 7.6984 |
652
+ | 0.5219 | 37400 | 7.6638 |
653
+ | 0.5233 | 37500 | 7.6093 |
654
+ | 0.5247 | 37600 | 7.5925 |
655
+ | 0.5261 | 37700 | 7.6281 |
656
+ | 0.5275 | 37800 | 7.6349 |
657
+ | 0.5289 | 37900 | 7.6152 |
658
+ | 0.5303 | 38000 | 7.6531 |
659
+ | 0.5316 | 38100 | 7.6078 |
660
+ | 0.5330 | 38200 | 7.6775 |
661
+ | 0.5344 | 38300 | 7.6268 |
662
+ | 0.5358 | 38400 | 7.641 |
663
+ | 0.5372 | 38500 | 7.6721 |
664
+ | 0.5386 | 38600 | 7.6069 |
665
+ | 0.5400 | 38700 | 7.6174 |
666
+ | 0.5414 | 38800 | 7.6407 |
667
+ | 0.5428 | 38900 | 7.6226 |
668
+ | 0.5442 | 39000 | 7.5843 |
669
+ | 0.5456 | 39100 | 7.6588 |
670
+ | 0.5470 | 39200 | 7.6405 |
671
+ | 0.5484 | 39300 | 7.5908 |
672
+ | 0.5498 | 39400 | 7.6203 |
673
+ | 0.5512 | 39500 | 7.608 |
674
+ | 0.5526 | 39600 | 7.6177 |
675
+ | 0.5540 | 39700 | 7.606 |
676
+ | 0.5554 | 39800 | 7.7102 |
677
+ | 0.5568 | 39900 | 7.6252 |
678
+ | 0.5582 | 40000 | 7.6235 |
679
+ | 0.5596 | 40100 | 7.6325 |
680
+ | 0.5610 | 40200 | 7.6146 |
681
+ | 0.5623 | 40300 | 7.6386 |
682
+ | 0.5637 | 40400 | 7.6189 |
683
+ | 0.5651 | 40500 | 7.638 |
684
+ | 0.5665 | 40600 | 7.5859 |
685
+ | 0.5679 | 40700 | 7.5737 |
686
+ | 0.5693 | 40800 | 7.6331 |
687
+ | 0.5707 | 40900 | 7.6265 |
688
+ | 0.5721 | 41000 | 7.6475 |
689
+ | 0.5735 | 41100 | 7.5966 |
690
+ | 0.5749 | 41200 | 7.6331 |
691
+ | 0.5763 | 41300 | 7.5655 |
692
+ | 0.5777 | 41400 | 7.6727 |
693
+ | 0.5791 | 41500 | 7.5972 |
694
+ | 0.5805 | 41600 | 7.5911 |
695
+ | 0.5819 | 41700 | 7.6734 |
696
+ | 0.5833 | 41800 | 7.6528 |
697
+ | 0.5847 | 41900 | 7.6063 |
698
+ | 0.5861 | 42000 | 7.6496 |
699
+ | 0.5875 | 42100 | 7.6225 |
700
+ | 0.5889 | 42200 | 7.6863 |
701
+ | 0.5903 | 42300 | 7.6145 |
702
+ | 0.5916 | 42400 | 7.6072 |
703
+ | 0.5930 | 42500 | 7.625 |
704
+ | 0.5944 | 42600 | 7.6087 |
705
+ | 0.5958 | 42700 | 7.6622 |
706
+ | 0.5972 | 42800 | 7.5619 |
707
+ | 0.5986 | 42900 | 7.6563 |
708
+ | 0.6000 | 43000 | 7.5958 |
709
+ | 0.6014 | 43100 | 7.6107 |
710
+ | 0.6028 | 43200 | 7.6208 |
711
+ | 0.6042 | 43300 | 7.5973 |
712
+ | 0.6056 | 43400 | 7.5928 |
713
+ | 0.6070 | 43500 | 7.637 |
714
+ | 0.6084 | 43600 | 7.5659 |
715
+ | 0.6098 | 43700 | 7.5921 |
716
+ | 0.6112 | 43800 | 7.5961 |
717
+ | 0.6126 | 43900 | 7.5614 |
718
+ | 0.6140 | 44000 | 7.6366 |
719
+ | 0.6154 | 44100 | 7.5947 |
720
+ | 0.6168 | 44200 | 7.5976 |
721
+ | 0.6182 | 44300 | 7.6406 |
722
+ | 0.6196 | 44400 | 7.585 |
723
+ | 0.6210 | 44500 | 7.5722 |
724
+ | 0.6223 | 44600 | 7.6193 |
725
+ | 0.6237 | 44700 | 7.6249 |
726
+ | 0.6251 | 44800 | 7.6208 |
727
+ | 0.6265 | 44900 | 7.6293 |
728
+ | 0.6279 | 45000 | 7.6023 |
729
+ | 0.6293 | 45100 | 7.5996 |
730
+ | 0.6307 | 45200 | 7.5553 |
731
+ | 0.6321 | 45300 | 7.5996 |
732
+ | 0.6335 | 45400 | 7.5994 |
733
+ | 0.6349 | 45500 | 7.6691 |
734
+ | 0.6363 | 45600 | 7.6051 |
735
+ | 0.6377 | 45700 | 7.6589 |
736
+ | 0.6391 | 45800 | 7.6217 |
737
+ | 0.6405 | 45900 | 7.6053 |
738
+ | 0.6419 | 46000 | 7.6082 |
739
+ | 0.6433 | 46100 | 7.5913 |
740
+ | 0.6447 | 46200 | 7.5742 |
741
+ | 0.6461 | 46300 | 7.597 |
742
+ | 0.6475 | 46400 | 7.5759 |
743
+ | 0.6489 | 46500 | 7.5964 |
744
+ | 0.6503 | 46600 | 7.6719 |
745
+ | 0.6517 | 46700 | 7.605 |
746
+ | 0.6530 | 46800 | 7.5705 |
747
+ | 0.6544 | 46900 | 7.6292 |
748
+ | 0.6558 | 47000 | 7.5978 |
749
+ | 0.6572 | 47100 | 7.5525 |
750
+ | 0.6586 | 47200 | 7.5838 |
751
+ | 0.6600 | 47300 | 7.5672 |
752
+ | 0.6614 | 47400 | 7.6041 |
753
+ | 0.6628 | 47500 | 7.6255 |
754
+ | 0.6642 | 47600 | 7.5415 |
755
+ | 0.6656 | 47700 | 7.61 |
756
+ | 0.6670 | 47800 | 7.573 |
757
+ | 0.6684 | 47900 | 7.6413 |
758
+ | 0.6698 | 48000 | 7.6277 |
759
+ | 0.6712 | 48100 | 7.5903 |
760
+ | 0.6726 | 48200 | 7.6542 |
761
+ | 0.6740 | 48300 | 7.5772 |
762
+ | 0.6754 | 48400 | 7.5991 |
763
+ | 0.6768 | 48500 | 7.5853 |
764
+ | 0.6782 | 48600 | 7.5909 |
765
+ | 0.6796 | 48700 | 7.5912 |
766
+ | 0.6810 | 48800 | 7.6052 |
767
+ | 0.6824 | 48900 | 7.632 |
768
+ | 0.6837 | 49000 | 7.5851 |
769
+ | 0.6851 | 49100 | 7.6688 |
770
+ | 0.6865 | 49200 | 7.6091 |
771
+ | 0.6879 | 49300 | 7.5745 |
772
+ | 0.6893 | 49400 | 7.5833 |
773
+ | 0.6907 | 49500 | 7.5777 |
774
+ | 0.6921 | 49600 | 7.5637 |
775
+ | 0.6935 | 49700 | 7.5622 |
776
+ | 0.6949 | 49800 | 7.5633 |
777
+ | 0.6963 | 49900 | 7.6023 |
778
+ | 0.6977 | 50000 | 7.6103 |
779
+ | 0.6991 | 50100 | 7.547 |
780
+ | 0.7005 | 50200 | 7.5907 |
781
+ | 0.7019 | 50300 | 7.5882 |
782
+ | 0.7033 | 50400 | 7.5875 |
783
+ | 0.7047 | 50500 | 7.5909 |
784
+ | 0.7061 | 50600 | 7.6021 |
785
+ | 0.7075 | 50700 | 7.549 |
786
+ | 0.7089 | 50800 | 7.6511 |
787
+ | 0.7103 | 50900 | 7.6606 |
788
+ | 0.7117 | 51000 | 7.5967 |
789
+ | 0.7130 | 51100 | 7.5722 |
790
+ | 0.7144 | 51200 | 7.6129 |
791
+ | 0.7158 | 51300 | 7.5736 |
792
+ | 0.7172 | 51400 | 7.5799 |
793
+ | 0.7186 | 51500 | 7.6209 |
794
+ | 0.7200 | 51600 | 7.595 |
795
+ | 0.7214 | 51700 | 7.5484 |
796
+ | 0.7228 | 51800 | 7.5999 |
797
+ | 0.7242 | 51900 | 7.5638 |
798
+ | 0.7256 | 52000 | 7.5654 |
799
+ | 0.7270 | 52100 | 7.6303 |
800
+ | 0.7284 | 52200 | 7.5485 |
801
+ | 0.7298 | 52300 | 7.676 |
802
+ | 0.7312 | 52400 | 7.6376 |
803
+ | 0.7326 | 52500 | 7.557 |
804
+ | 0.7340 | 52600 | 7.5631 |
805
+ | 0.7354 | 52700 | 7.6637 |
806
+ | 0.7368 | 52800 | 7.588 |
807
+ | 0.7382 | 52900 | 7.5771 |
808
+ | 0.7396 | 53000 | 7.5766 |
809
+ | 0.7410 | 53100 | 7.5731 |
810
+ | 0.7424 | 53200 | 7.508 |
811
+ | 0.7437 | 53300 | 7.6023 |
812
+ | 0.7451 | 53400 | 7.5796 |
813
+ | 0.7465 | 53500 | 7.5593 |
814
+ | 0.7479 | 53600 | 7.5516 |
815
+ | 0.7493 | 53700 | 7.5973 |
816
+ | 0.7507 | 53800 | 7.5868 |
817
+ | 0.7521 | 53900 | 7.623 |
818
+ | 0.7535 | 54000 | 7.5972 |
819
+ | 0.7549 | 54100 | 7.6304 |
820
+ | 0.7563 | 54200 | 7.5927 |
821
+ | 0.7577 | 54300 | 7.5351 |
822
+ | 0.7591 | 54400 | 7.5732 |
823
+ | 0.7605 | 54500 | 7.6676 |
824
+ | 0.7619 | 54600 | 7.6103 |
825
+ | 0.7633 | 54700 | 7.5572 |
826
+ | 0.7647 | 54800 | 7.574 |
827
+ | 0.7661 | 54900 | 7.555 |
828
+ | 0.7675 | 55000 | 7.6347 |
829
+ | 0.7689 | 55100 | 7.5827 |
830
+ | 0.7703 | 55200 | 7.678 |
831
+ | 0.7717 | 55300 | 7.5577 |
832
+ | 0.7731 | 55400 | 7.5606 |
833
+ | 0.7744 | 55500 | 7.5284 |
834
+ | 0.7758 | 55600 | 7.5561 |
835
+ | 0.7772 | 55700 | 7.6569 |
836
+ | 0.7786 | 55800 | 7.5604 |
837
+ | 0.7800 | 55900 | 7.6444 |
838
+ | 0.7814 | 56000 | 7.602 |
839
+ | 0.7828 | 56100 | 7.5532 |
840
+ | 0.7842 | 56200 | 7.5524 |
841
+ | 0.7856 | 56300 | 7.654 |
842
+ | 0.7870 | 56400 | 7.5799 |
843
+ | 0.7884 | 56500 | 7.5609 |
844
+ | 0.7898 | 56600 | 7.5625 |
845
+ | 0.7912 | 56700 | 7.571 |
846
+ | 0.7926 | 56800 | 7.5126 |
847
+ | 0.7940 | 56900 | 7.5644 |
848
+ | 0.7954 | 57000 | 7.5508 |
849
+ | 0.7968 | 57100 | 7.5183 |
850
+ | 0.7982 | 57200 | 7.5749 |
851
+ | 0.7996 | 57300 | 7.5339 |
852
+ | 0.8010 | 57400 | 7.5739 |
853
+ | 0.8024 | 57500 | 7.5492 |
854
+ | 0.8038 | 57600 | 7.5781 |
855
+ | 0.8051 | 57700 | 7.5753 |
856
+ | 0.8065 | 57800 | 7.5485 |
857
+ | 0.8079 | 57900 | 7.5608 |
858
+ | 0.8093 | 58000 | 7.5515 |
859
+ | 0.8107 | 58100 | 7.6011 |
860
+ | 0.8121 | 58200 | 7.6072 |
861
+ | 0.8135 | 58300 | 7.5615 |
862
+ | 0.8149 | 58400 | 7.5583 |
863
+ | 0.8163 | 58500 | 7.5423 |
864
+ | 0.8177 | 58600 | 7.5852 |
865
+ | 0.8191 | 58700 | 7.5612 |
866
+ | 0.8205 | 58800 | 7.5808 |
867
+ | 0.8219 | 58900 | 7.5888 |
868
+ | 0.8233 | 59000 | 7.6449 |
869
+ | 0.8247 | 59100 | 7.6599 |
870
+ | 0.8261 | 59200 | 7.573 |
871
+ | 0.8275 | 59300 | 7.5533 |
872
+ | 0.8289 | 59400 | 7.5423 |
873
+ | 0.8303 | 59500 | 7.5879 |
874
+ | 0.8317 | 59600 | 7.5699 |
875
+ | 0.8331 | 59700 | 7.5792 |
876
+ | 0.8344 | 59800 | 7.5552 |
877
+ | 0.8358 | 59900 | 7.5982 |
878
+ | 0.8372 | 60000 | 7.5984 |
879
+ | 0.8386 | 60100 | 7.5383 |
880
+ | 0.8400 | 60200 | 7.5518 |
881
+ | 0.8414 | 60300 | 7.5587 |
882
+ | 0.8428 | 60400 | 7.5152 |
883
+ | 0.8442 | 60500 | 7.5945 |
884
+ | 0.8456 | 60600 | 7.5674 |
885
+ | 0.8470 | 60700 | 7.5527 |
886
+ | 0.8484 | 60800 | 7.5941 |
887
+ | 0.8498 | 60900 | 7.5964 |
888
+ | 0.8512 | 61000 | 7.5625 |
889
+ | 0.8526 | 61100 | 7.5526 |
890
+ | 0.8540 | 61200 | 7.5592 |
891
+ | 0.8554 | 61300 | 7.5593 |
892
+ | 0.8568 | 61400 | 7.5392 |
893
+ | 0.8582 | 61500 | 7.641 |
894
+ | 0.8596 | 61600 | 7.6258 |
895
+ | 0.8610 | 61700 | 7.6588 |
896
+ | 0.8624 | 61800 | 7.5707 |
897
+ | 0.8638 | 61900 | 7.5171 |
898
+ | 0.8651 | 62000 | 7.6107 |
899
+ | 0.8665 | 62100 | 7.6272 |
900
+ | 0.8679 | 62200 | 7.5549 |
901
+ | 0.8693 | 62300 | 7.5535 |
902
+ | 0.8707 | 62400 | 7.6454 |
903
+ | 0.8721 | 62500 | 7.5498 |
904
+ | 0.8735 | 62600 | 7.5898 |
905
+ | 0.8749 | 62700 | 7.5461 |
906
+ | 0.8763 | 62800 | 7.5611 |
907
+ | 0.8777 | 62900 | 7.6068 |
908
+ | 0.8791 | 63000 | 7.6001 |
909
+ | 0.8805 | 63100 | 7.5407 |
910
+ | 0.8819 | 63200 | 7.5961 |
911
+ | 0.8833 | 63300 | 7.5839 |
912
+ | 0.8847 | 63400 | 7.5426 |
913
+ | 0.8861 | 63500 | 7.6011 |
914
+ | 0.8875 | 63600 | 7.5708 |
915
+ | 0.8889 | 63700 | 7.5964 |
916
+ | 0.8903 | 63800 | 7.5704 |
917
+ | 0.8917 | 63900 | 7.5372 |
918
+ | 0.8931 | 64000 | 7.5835 |
919
+ | 0.8945 | 64100 | 7.5483 |
920
+ | 0.8958 | 64200 | 7.544 |
921
+ | 0.8972 | 64300 | 7.5677 |
922
+ | 0.8986 | 64400 | 7.5636 |
923
+ | 0.9000 | 64500 | 7.5914 |
924
+ | 0.9014 | 64600 | 7.5789 |
925
+ | 0.9028 | 64700 | 7.5666 |
926
+ | 0.9042 | 64800 | 7.5866 |
927
+ | 0.9056 | 64900 | 7.6195 |
928
+ | 0.9070 | 65000 | 7.5388 |
929
+ | 0.9084 | 65100 | 7.5821 |
930
+ | 0.9098 | 65200 | 7.6767 |
931
+ | 0.9112 | 65300 | 7.6625 |
932
+ | 0.9126 | 65400 | 7.5812 |
933
+ | 0.9140 | 65500 | 7.5026 |
934
+ | 0.9154 | 65600 | 7.5524 |
935
+ | 0.9168 | 65700 | 7.5851 |
936
+ | 0.9182 | 65800 | 7.5762 |
937
+ | 0.9196 | 65900 | 7.5466 |
938
+ | 0.9210 | 66000 | 7.6039 |
939
+ | 0.9224 | 66100 | 7.6041 |
940
+ | 0.9238 | 66200 | 7.5805 |
941
+ | 0.9252 | 66300 | 7.6334 |
942
+ | 0.9265 | 66400 | 7.5348 |
943
+ | 0.9279 | 66500 | 7.6065 |
944
+ | 0.9293 | 66600 | 7.5003 |
945
+ | 0.9307 | 66700 | 7.5512 |
946
+ | 0.9321 | 66800 | 7.5404 |
947
+ | 0.9335 | 66900 | 7.6176 |
948
+ | 0.9349 | 67000 | 7.5634 |
949
+ | 0.9363 | 67100 | 7.5786 |
950
+ | 0.9377 | 67200 | 7.6327 |
951
+ | 0.9391 | 67300 | 7.5532 |
952
+ | 0.9405 | 67400 | 7.5362 |
953
+ | 0.9419 | 67500 | 7.5844 |
954
+ | 0.9433 | 67600 | 7.5632 |
955
+ | 0.9447 | 67700 | 7.553 |
956
+ | 0.9461 | 67800 | 7.5422 |
957
+ | 0.9475 | 67900 | 7.5483 |
958
+ | 0.9489 | 68000 | 7.5477 |
959
+ | 0.9503 | 68100 | 7.5423 |
960
+ | 0.9517 | 68200 | 7.5656 |
961
+ | 0.9531 | 68300 | 7.5573 |
962
+ | 0.9545 | 68400 | 7.525 |
963
+ | 0.9558 | 68500 | 7.55 |
964
+ | 0.9572 | 68600 | 7.5341 |
965
+ | 0.9586 | 68700 | 7.5318 |
966
+ | 0.9600 | 68800 | 7.5691 |
967
+ | 0.9614 | 68900 | 7.5793 |
968
+ | 0.9628 | 69000 | 7.5615 |
969
+ | 0.9642 | 69100 | 7.5348 |
970
+ | 0.9656 | 69200 | 7.5384 |
971
+ | 0.9670 | 69300 | 7.5392 |
972
+ | 0.9684 | 69400 | 7.5909 |
973
+ | 0.9698 | 69500 | 7.5587 |
974
+ | 0.9712 | 69600 | 7.5447 |
975
+ | 0.9726 | 69700 | 7.5731 |
976
+ | 0.9740 | 69800 | 7.5767 |
977
+ | 0.9754 | 69900 | 7.6208 |
978
+ | 0.9768 | 70000 | 7.5414 |
979
+ | 0.9782 | 70100 | 7.6061 |
980
+ | 0.9796 | 70200 | 7.6285 |
981
+ | 0.9810 | 70300 | 7.5533 |
982
+ | 0.9824 | 70400 | 7.5552 |
983
+ | 0.9838 | 70500 | 7.5479 |
984
+ | 0.9852 | 70600 | 7.571 |
985
+ | 0.9865 | 70700 | 7.6259 |
986
+ | 0.9879 | 70800 | 7.6366 |
987
+ | 0.9893 | 70900 | 7.5615 |
988
+ | 0.9907 | 71000 | 7.612 |
989
+ | 0.9921 | 71100 | 7.5309 |
990
+ | 0.9935 | 71200 | 7.5122 |
991
+ | 0.9949 | 71300 | 7.5692 |
992
+ | 0.9963 | 71400 | 7.6198 |
993
+ | 0.9977 | 71500 | 7.527 |
994
+ | 0.9991 | 71600 | 7.5496 |
995
+
996
+ </details>
997
+
998
+ ### Framework Versions
999
+ - Python: 3.8.10
1000
+ - Sentence Transformers: 3.1.1
1001
+ - Transformers: 4.45.2
1002
+ - PyTorch: 2.4.1+cu118
1003
+ - Accelerate: 1.0.1
1004
+ - Datasets: 3.0.1
1005
+ - Tokenizers: 0.20.3
1006
+
1007
+ ## Citation
1008
+
1009
+ ### BibTeX
1010
+
1011
+ #### Sentence Transformers
1012
+ ```bibtex
1013
+ @inproceedings{reimers-2019-sentence-bert,
1014
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1015
+ author = "Reimers, Nils and Gurevych, Iryna",
1016
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1017
+ month = "11",
1018
+ year = "2019",
1019
+ publisher = "Association for Computational Linguistics",
1020
+ url = "https://arxiv.org/abs/1908.10084",
1021
+ }
1022
+ ```
1023
+
1024
+ #### CoSENTLoss
1025
+ ```bibtex
1026
+ @online{kexuefm-8847,
1027
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1028
+ author={Su Jianlin},
1029
+ year={2022},
1030
+ month={Jan},
1031
+ url={https://kexue.fm/archives/8847},
1032
+ }
1033
+ ```
1034
+
1035
+ <!--
1036
+ ## Glossary
1037
+
1038
+ *Clearly define terms in order to be accessible across audiences.*
1039
+ -->
1040
+
1041
+ <!--
1042
+ ## Model Card Authors
1043
+
1044
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1045
+ -->
1046
+
1047
+ <!--
1048
+ ## Model Card Contact
1049
+
1050
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1051
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:237c513261dfddde1c8e7aa3090f0aba61d3dd021b7873cbdfd4818d22a612fb
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff