Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +1051 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1051 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- generated_from_trainer
|
| 10 |
+
- dataset_size:9172937
|
| 11 |
+
- loss:CoSENTLoss
|
| 12 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
| 13 |
+
widget:
|
| 14 |
+
- source_sentence: unpaid therapist with a built in lie detector mug
|
| 15 |
+
sentences:
|
| 16 |
+
- dream and goal sticky notes
|
| 17 |
+
- mini croissant
|
| 18 |
+
- frozen peanut butter cookies
|
| 19 |
+
- source_sentence: and
|
| 20 |
+
sentences:
|
| 21 |
+
- emmental cheese soup
|
| 22 |
+
- ball with good grip
|
| 23 |
+
- swimming remote control car
|
| 24 |
+
- source_sentence: handle mug
|
| 25 |
+
sentences:
|
| 26 |
+
- oversized fit tshirt
|
| 27 |
+
- valentine brownie
|
| 28 |
+
- aloe eva hair oil replacement
|
| 29 |
+
- source_sentence: healthy food
|
| 30 |
+
sentences:
|
| 31 |
+
- beef brisket salad
|
| 32 |
+
- hdrawn swim shorts
|
| 33 |
+
- nox balls
|
| 34 |
+
- source_sentence: deluxe mug for morning coffee
|
| 35 |
+
sentences:
|
| 36 |
+
- comfort pants
|
| 37 |
+
- cheddar cheese burrito
|
| 38 |
+
- polyfibre scarf
|
| 39 |
+
pipeline_tag: sentence-similarity
|
| 40 |
+
library_name: sentence-transformers
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
# all-MiniLM-L6-v8-pair_score
|
| 44 |
+
|
| 45 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 46 |
+
|
| 47 |
+
## Model Details
|
| 48 |
+
|
| 49 |
+
### Model Description
|
| 50 |
+
- **Model Type:** Sentence Transformer
|
| 51 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
|
| 52 |
+
- **Maximum Sequence Length:** 256 tokens
|
| 53 |
+
- **Output Dimensionality:** 384 tokens
|
| 54 |
+
- **Similarity Function:** Cosine Similarity
|
| 55 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 56 |
+
- **Language:** en
|
| 57 |
+
- **License:** apache-2.0
|
| 58 |
+
|
| 59 |
+
### Model Sources
|
| 60 |
+
|
| 61 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 62 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 63 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 64 |
+
|
| 65 |
+
### Full Model Architecture
|
| 66 |
+
|
| 67 |
+
```
|
| 68 |
+
SentenceTransformer(
|
| 69 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
| 70 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 71 |
+
(2): Normalize()
|
| 72 |
+
)
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## Usage
|
| 76 |
+
|
| 77 |
+
### Direct Usage (Sentence Transformers)
|
| 78 |
+
|
| 79 |
+
First install the Sentence Transformers library:
|
| 80 |
+
|
| 81 |
+
```bash
|
| 82 |
+
pip install -U sentence-transformers
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
Then you can load this model and run inference.
|
| 86 |
+
```python
|
| 87 |
+
from sentence_transformers import SentenceTransformer
|
| 88 |
+
|
| 89 |
+
# Download from the 🤗 Hub
|
| 90 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 91 |
+
# Run inference
|
| 92 |
+
sentences = [
|
| 93 |
+
'deluxe mug for morning coffee',
|
| 94 |
+
'polyfibre scarf',
|
| 95 |
+
'cheddar cheese burrito',
|
| 96 |
+
]
|
| 97 |
+
embeddings = model.encode(sentences)
|
| 98 |
+
print(embeddings.shape)
|
| 99 |
+
# [3, 384]
|
| 100 |
+
|
| 101 |
+
# Get the similarity scores for the embeddings
|
| 102 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 103 |
+
print(similarities.shape)
|
| 104 |
+
# [3, 3]
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
<!--
|
| 108 |
+
### Direct Usage (Transformers)
|
| 109 |
+
|
| 110 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 111 |
+
|
| 112 |
+
</details>
|
| 113 |
+
-->
|
| 114 |
+
|
| 115 |
+
<!--
|
| 116 |
+
### Downstream Usage (Sentence Transformers)
|
| 117 |
+
|
| 118 |
+
You can finetune this model on your own dataset.
|
| 119 |
+
|
| 120 |
+
<details><summary>Click to expand</summary>
|
| 121 |
+
|
| 122 |
+
</details>
|
| 123 |
+
-->
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Out-of-Scope Use
|
| 127 |
+
|
| 128 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 129 |
+
-->
|
| 130 |
+
|
| 131 |
+
<!--
|
| 132 |
+
## Bias, Risks and Limitations
|
| 133 |
+
|
| 134 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 135 |
+
-->
|
| 136 |
+
|
| 137 |
+
<!--
|
| 138 |
+
### Recommendations
|
| 139 |
+
|
| 140 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 141 |
+
-->
|
| 142 |
+
|
| 143 |
+
## Training Details
|
| 144 |
+
|
| 145 |
+
### Training Hyperparameters
|
| 146 |
+
#### Non-Default Hyperparameters
|
| 147 |
+
|
| 148 |
+
- `eval_strategy`: steps
|
| 149 |
+
- `per_device_train_batch_size`: 128
|
| 150 |
+
- `per_device_eval_batch_size`: 128
|
| 151 |
+
- `learning_rate`: 2e-05
|
| 152 |
+
- `num_train_epochs`: 1
|
| 153 |
+
- `warmup_ratio`: 0.1
|
| 154 |
+
- `fp16`: True
|
| 155 |
+
|
| 156 |
+
#### All Hyperparameters
|
| 157 |
+
<details><summary>Click to expand</summary>
|
| 158 |
+
|
| 159 |
+
- `overwrite_output_dir`: False
|
| 160 |
+
- `do_predict`: False
|
| 161 |
+
- `eval_strategy`: steps
|
| 162 |
+
- `prediction_loss_only`: True
|
| 163 |
+
- `per_device_train_batch_size`: 128
|
| 164 |
+
- `per_device_eval_batch_size`: 128
|
| 165 |
+
- `per_gpu_train_batch_size`: None
|
| 166 |
+
- `per_gpu_eval_batch_size`: None
|
| 167 |
+
- `gradient_accumulation_steps`: 1
|
| 168 |
+
- `eval_accumulation_steps`: None
|
| 169 |
+
- `torch_empty_cache_steps`: None
|
| 170 |
+
- `learning_rate`: 2e-05
|
| 171 |
+
- `weight_decay`: 0.0
|
| 172 |
+
- `adam_beta1`: 0.9
|
| 173 |
+
- `adam_beta2`: 0.999
|
| 174 |
+
- `adam_epsilon`: 1e-08
|
| 175 |
+
- `max_grad_norm`: 1.0
|
| 176 |
+
- `num_train_epochs`: 1
|
| 177 |
+
- `max_steps`: -1
|
| 178 |
+
- `lr_scheduler_type`: linear
|
| 179 |
+
- `lr_scheduler_kwargs`: {}
|
| 180 |
+
- `warmup_ratio`: 0.1
|
| 181 |
+
- `warmup_steps`: 0
|
| 182 |
+
- `log_level`: passive
|
| 183 |
+
- `log_level_replica`: warning
|
| 184 |
+
- `log_on_each_node`: True
|
| 185 |
+
- `logging_nan_inf_filter`: True
|
| 186 |
+
- `save_safetensors`: True
|
| 187 |
+
- `save_on_each_node`: False
|
| 188 |
+
- `save_only_model`: False
|
| 189 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 190 |
+
- `no_cuda`: False
|
| 191 |
+
- `use_cpu`: False
|
| 192 |
+
- `use_mps_device`: False
|
| 193 |
+
- `seed`: 42
|
| 194 |
+
- `data_seed`: None
|
| 195 |
+
- `jit_mode_eval`: False
|
| 196 |
+
- `use_ipex`: False
|
| 197 |
+
- `bf16`: False
|
| 198 |
+
- `fp16`: True
|
| 199 |
+
- `fp16_opt_level`: O1
|
| 200 |
+
- `half_precision_backend`: auto
|
| 201 |
+
- `bf16_full_eval`: False
|
| 202 |
+
- `fp16_full_eval`: False
|
| 203 |
+
- `tf32`: None
|
| 204 |
+
- `local_rank`: 0
|
| 205 |
+
- `ddp_backend`: None
|
| 206 |
+
- `tpu_num_cores`: None
|
| 207 |
+
- `tpu_metrics_debug`: False
|
| 208 |
+
- `debug`: []
|
| 209 |
+
- `dataloader_drop_last`: False
|
| 210 |
+
- `dataloader_num_workers`: 0
|
| 211 |
+
- `dataloader_prefetch_factor`: None
|
| 212 |
+
- `past_index`: -1
|
| 213 |
+
- `disable_tqdm`: False
|
| 214 |
+
- `remove_unused_columns`: True
|
| 215 |
+
- `label_names`: None
|
| 216 |
+
- `load_best_model_at_end`: False
|
| 217 |
+
- `ignore_data_skip`: False
|
| 218 |
+
- `fsdp`: []
|
| 219 |
+
- `fsdp_min_num_params`: 0
|
| 220 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 221 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 222 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 223 |
+
- `deepspeed`: None
|
| 224 |
+
- `label_smoothing_factor`: 0.0
|
| 225 |
+
- `optim`: adamw_torch
|
| 226 |
+
- `optim_args`: None
|
| 227 |
+
- `adafactor`: False
|
| 228 |
+
- `group_by_length`: False
|
| 229 |
+
- `length_column_name`: length
|
| 230 |
+
- `ddp_find_unused_parameters`: None
|
| 231 |
+
- `ddp_bucket_cap_mb`: None
|
| 232 |
+
- `ddp_broadcast_buffers`: False
|
| 233 |
+
- `dataloader_pin_memory`: True
|
| 234 |
+
- `dataloader_persistent_workers`: False
|
| 235 |
+
- `skip_memory_metrics`: True
|
| 236 |
+
- `use_legacy_prediction_loop`: False
|
| 237 |
+
- `push_to_hub`: False
|
| 238 |
+
- `resume_from_checkpoint`: None
|
| 239 |
+
- `hub_model_id`: None
|
| 240 |
+
- `hub_strategy`: every_save
|
| 241 |
+
- `hub_private_repo`: False
|
| 242 |
+
- `hub_always_push`: False
|
| 243 |
+
- `gradient_checkpointing`: False
|
| 244 |
+
- `gradient_checkpointing_kwargs`: None
|
| 245 |
+
- `include_inputs_for_metrics`: False
|
| 246 |
+
- `eval_do_concat_batches`: True
|
| 247 |
+
- `fp16_backend`: auto
|
| 248 |
+
- `push_to_hub_model_id`: None
|
| 249 |
+
- `push_to_hub_organization`: None
|
| 250 |
+
- `mp_parameters`:
|
| 251 |
+
- `auto_find_batch_size`: False
|
| 252 |
+
- `full_determinism`: False
|
| 253 |
+
- `torchdynamo`: None
|
| 254 |
+
- `ray_scope`: last
|
| 255 |
+
- `ddp_timeout`: 1800
|
| 256 |
+
- `torch_compile`: False
|
| 257 |
+
- `torch_compile_backend`: None
|
| 258 |
+
- `torch_compile_mode`: None
|
| 259 |
+
- `dispatch_batches`: None
|
| 260 |
+
- `split_batches`: None
|
| 261 |
+
- `include_tokens_per_second`: False
|
| 262 |
+
- `include_num_input_tokens_seen`: False
|
| 263 |
+
- `neftune_noise_alpha`: None
|
| 264 |
+
- `optim_target_modules`: None
|
| 265 |
+
- `batch_eval_metrics`: False
|
| 266 |
+
- `eval_on_start`: False
|
| 267 |
+
- `use_liger_kernel`: False
|
| 268 |
+
- `eval_use_gather_object`: False
|
| 269 |
+
- `batch_sampler`: batch_sampler
|
| 270 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 271 |
+
|
| 272 |
+
</details>
|
| 273 |
+
|
| 274 |
+
### Training Logs
|
| 275 |
+
<details><summary>Click to expand</summary>
|
| 276 |
+
|
| 277 |
+
| Epoch | Step | Training Loss |
|
| 278 |
+
|:------:|:-----:|:-------------:|
|
| 279 |
+
| 0.0014 | 100 | 11.4553 |
|
| 280 |
+
| 0.0028 | 200 | 11.5147 |
|
| 281 |
+
| 0.0042 | 300 | 11.1304 |
|
| 282 |
+
| 0.0056 | 400 | 10.7925 |
|
| 283 |
+
| 0.0070 | 500 | 10.4493 |
|
| 284 |
+
| 0.0084 | 600 | 10.2631 |
|
| 285 |
+
| 0.0098 | 700 | 9.987 |
|
| 286 |
+
| 0.0112 | 800 | 9.8477 |
|
| 287 |
+
| 0.0126 | 900 | 9.6295 |
|
| 288 |
+
| 0.0140 | 1000 | 9.3638 |
|
| 289 |
+
| 0.0153 | 1100 | 9.1913 |
|
| 290 |
+
| 0.0167 | 1200 | 8.9688 |
|
| 291 |
+
| 0.0181 | 1300 | 8.808 |
|
| 292 |
+
| 0.0195 | 1400 | 8.6993 |
|
| 293 |
+
| 0.0209 | 1500 | 8.6078 |
|
| 294 |
+
| 0.0223 | 1600 | 8.5739 |
|
| 295 |
+
| 0.0237 | 1700 | 8.5575 |
|
| 296 |
+
| 0.0251 | 1800 | 8.5173 |
|
| 297 |
+
| 0.0265 | 1900 | 8.4983 |
|
| 298 |
+
| 0.0279 | 2000 | 8.4662 |
|
| 299 |
+
| 0.0293 | 2100 | 8.4408 |
|
| 300 |
+
| 0.0307 | 2200 | 8.4136 |
|
| 301 |
+
| 0.0321 | 2300 | 8.4002 |
|
| 302 |
+
| 0.0335 | 2400 | 8.3883 |
|
| 303 |
+
| 0.0349 | 2500 | 8.3785 |
|
| 304 |
+
| 0.0363 | 2600 | 8.3458 |
|
| 305 |
+
| 0.0377 | 2700 | 8.3617 |
|
| 306 |
+
| 0.0391 | 2800 | 8.3338 |
|
| 307 |
+
| 0.0405 | 2900 | 8.3281 |
|
| 308 |
+
| 0.0419 | 3000 | 8.3043 |
|
| 309 |
+
| 0.0433 | 3100 | 8.3087 |
|
| 310 |
+
| 0.0447 | 3200 | 8.2913 |
|
| 311 |
+
| 0.0460 | 3300 | 8.2854 |
|
| 312 |
+
| 0.0474 | 3400 | 8.2408 |
|
| 313 |
+
| 0.0488 | 3500 | 8.2628 |
|
| 314 |
+
| 0.0502 | 3600 | 8.2401 |
|
| 315 |
+
| 0.0516 | 3700 | 8.2538 |
|
| 316 |
+
| 0.0530 | 3800 | 8.2103 |
|
| 317 |
+
| 0.0544 | 3900 | 8.2221 |
|
| 318 |
+
| 0.0558 | 4000 | 8.2248 |
|
| 319 |
+
| 0.0572 | 4100 | 8.2045 |
|
| 320 |
+
| 0.0586 | 4200 | 8.2008 |
|
| 321 |
+
| 0.0600 | 4300 | 8.196 |
|
| 322 |
+
| 0.0614 | 4400 | 8.1757 |
|
| 323 |
+
| 0.0628 | 4500 | 8.1845 |
|
| 324 |
+
| 0.0642 | 4600 | 8.1714 |
|
| 325 |
+
| 0.0656 | 4700 | 8.1745 |
|
| 326 |
+
| 0.0670 | 4800 | 8.1702 |
|
| 327 |
+
| 0.0684 | 4900 | 8.1767 |
|
| 328 |
+
| 0.0698 | 5000 | 8.1379 |
|
| 329 |
+
| 0.0712 | 5100 | 8.1473 |
|
| 330 |
+
| 0.0726 | 5200 | 8.1443 |
|
| 331 |
+
| 0.0740 | 5300 | 8.1173 |
|
| 332 |
+
| 0.0754 | 5400 | 8.121 |
|
| 333 |
+
| 0.0767 | 5500 | 8.136 |
|
| 334 |
+
| 0.0781 | 5600 | 8.1246 |
|
| 335 |
+
| 0.0795 | 5700 | 8.0983 |
|
| 336 |
+
| 0.0809 | 5800 | 8.1023 |
|
| 337 |
+
| 0.0823 | 5900 | 8.1013 |
|
| 338 |
+
| 0.0837 | 6000 | 8.0657 |
|
| 339 |
+
| 0.0851 | 6100 | 8.0998 |
|
| 340 |
+
| 0.0865 | 6200 | 8.0585 |
|
| 341 |
+
| 0.0879 | 6300 | 8.1082 |
|
| 342 |
+
| 0.0893 | 6400 | 8.0652 |
|
| 343 |
+
| 0.0907 | 6500 | 8.0808 |
|
| 344 |
+
| 0.0921 | 6600 | 8.0756 |
|
| 345 |
+
| 0.0935 | 6700 | 8.0279 |
|
| 346 |
+
| 0.0949 | 6800 | 8.0659 |
|
| 347 |
+
| 0.0963 | 6900 | 8.0428 |
|
| 348 |
+
| 0.0977 | 7000 | 8.0363 |
|
| 349 |
+
| 0.0991 | 7100 | 8.0343 |
|
| 350 |
+
| 0.1005 | 7200 | 8.0488 |
|
| 351 |
+
| 0.1019 | 7300 | 8.0225 |
|
| 352 |
+
| 0.1033 | 7400 | 8.0203 |
|
| 353 |
+
| 0.1047 | 7500 | 8.0248 |
|
| 354 |
+
| 0.1061 | 7600 | 7.9882 |
|
| 355 |
+
| 0.1074 | 7700 | 7.9956 |
|
| 356 |
+
| 0.1088 | 7800 | 8.0338 |
|
| 357 |
+
| 0.1102 | 7900 | 7.9827 |
|
| 358 |
+
| 0.1116 | 8000 | 7.9849 |
|
| 359 |
+
| 0.1130 | 8100 | 8.0072 |
|
| 360 |
+
| 0.1144 | 8200 | 7.9708 |
|
| 361 |
+
| 0.1158 | 8300 | 7.9786 |
|
| 362 |
+
| 0.1172 | 8400 | 7.9983 |
|
| 363 |
+
| 0.1186 | 8500 | 7.9762 |
|
| 364 |
+
| 0.1200 | 8600 | 7.9955 |
|
| 365 |
+
| 0.1214 | 8700 | 7.9969 |
|
| 366 |
+
| 0.1228 | 8800 | 7.9913 |
|
| 367 |
+
| 0.1242 | 8900 | 7.9512 |
|
| 368 |
+
| 0.1256 | 9000 | 7.9672 |
|
| 369 |
+
| 0.1270 | 9100 | 7.9853 |
|
| 370 |
+
| 0.1284 | 9200 | 7.9626 |
|
| 371 |
+
| 0.1298 | 9300 | 7.9767 |
|
| 372 |
+
| 0.1312 | 9400 | 7.9404 |
|
| 373 |
+
| 0.1326 | 9500 | 7.9076 |
|
| 374 |
+
| 0.1340 | 9600 | 7.968 |
|
| 375 |
+
| 0.1354 | 9700 | 7.9432 |
|
| 376 |
+
| 0.1367 | 9800 | 7.9255 |
|
| 377 |
+
| 0.1381 | 9900 | 7.9095 |
|
| 378 |
+
| 0.1395 | 10000 | 7.9337 |
|
| 379 |
+
| 0.1409 | 10100 | 7.9464 |
|
| 380 |
+
| 0.1423 | 10200 | 7.9218 |
|
| 381 |
+
| 0.1437 | 10300 | 7.9102 |
|
| 382 |
+
| 0.1451 | 10400 | 7.9379 |
|
| 383 |
+
| 0.1465 | 10500 | 7.8907 |
|
| 384 |
+
| 0.1479 | 10600 | 7.8968 |
|
| 385 |
+
| 0.1493 | 10700 | 7.9193 |
|
| 386 |
+
| 0.1507 | 10800 | 7.9327 |
|
| 387 |
+
| 0.1521 | 10900 | 7.896 |
|
| 388 |
+
| 0.1535 | 11000 | 7.9228 |
|
| 389 |
+
| 0.1549 | 11100 | 7.9253 |
|
| 390 |
+
| 0.1563 | 11200 | 7.8825 |
|
| 391 |
+
| 0.1577 | 11300 | 7.8812 |
|
| 392 |
+
| 0.1591 | 11400 | 7.8883 |
|
| 393 |
+
| 0.1605 | 11500 | 7.8721 |
|
| 394 |
+
| 0.1619 | 11600 | 7.9218 |
|
| 395 |
+
| 0.1633 | 11700 | 7.8893 |
|
| 396 |
+
| 0.1647 | 11800 | 7.8961 |
|
| 397 |
+
| 0.1661 | 11900 | 7.8647 |
|
| 398 |
+
| 0.1674 | 12000 | 7.89 |
|
| 399 |
+
| 0.1688 | 12100 | 7.8422 |
|
| 400 |
+
| 0.1702 | 12200 | 7.9348 |
|
| 401 |
+
| 0.1716 | 12300 | 7.8808 |
|
| 402 |
+
| 0.1730 | 12400 | 7.8788 |
|
| 403 |
+
| 0.1744 | 12500 | 7.8794 |
|
| 404 |
+
| 0.1758 | 12600 | 7.848 |
|
| 405 |
+
| 0.1772 | 12700 | 7.8279 |
|
| 406 |
+
| 0.1786 | 12800 | 7.8655 |
|
| 407 |
+
| 0.1800 | 12900 | 7.8612 |
|
| 408 |
+
| 0.1814 | 13000 | 7.828 |
|
| 409 |
+
| 0.1828 | 13100 | 7.8419 |
|
| 410 |
+
| 0.1842 | 13200 | 7.8574 |
|
| 411 |
+
| 0.1856 | 13300 | 7.8688 |
|
| 412 |
+
| 0.1870 | 13400 | 7.8408 |
|
| 413 |
+
| 0.1884 | 13500 | 7.8172 |
|
| 414 |
+
| 0.1898 | 13600 | 7.8579 |
|
| 415 |
+
| 0.1912 | 13700 | 7.8392 |
|
| 416 |
+
| 0.1926 | 13800 | 7.849 |
|
| 417 |
+
| 0.1940 | 13900 | 7.8485 |
|
| 418 |
+
| 0.1954 | 14000 | 7.861 |
|
| 419 |
+
| 0.1968 | 14100 | 7.8257 |
|
| 420 |
+
| 0.1981 | 14200 | 7.8647 |
|
| 421 |
+
| 0.1995 | 14300 | 7.857 |
|
| 422 |
+
| 0.2009 | 14400 | 7.8031 |
|
| 423 |
+
| 0.2023 | 14500 | 7.8498 |
|
| 424 |
+
| 0.2037 | 14600 | 7.8175 |
|
| 425 |
+
| 0.2051 | 14700 | 7.8474 |
|
| 426 |
+
| 0.2065 | 14800 | 7.8158 |
|
| 427 |
+
| 0.2079 | 14900 | 7.7777 |
|
| 428 |
+
| 0.2093 | 15000 | 7.8362 |
|
| 429 |
+
| 0.2107 | 15100 | 7.8387 |
|
| 430 |
+
| 0.2121 | 15200 | 7.8225 |
|
| 431 |
+
| 0.2135 | 15300 | 7.8627 |
|
| 432 |
+
| 0.2149 | 15400 | 7.8543 |
|
| 433 |
+
| 0.2163 | 15500 | 7.8096 |
|
| 434 |
+
| 0.2177 | 15600 | 7.8201 |
|
| 435 |
+
| 0.2191 | 15700 | 7.8178 |
|
| 436 |
+
| 0.2205 | 15800 | 7.8138 |
|
| 437 |
+
| 0.2219 | 15900 | 7.8384 |
|
| 438 |
+
| 0.2233 | 16000 | 7.7811 |
|
| 439 |
+
| 0.2247 | 16100 | 7.82 |
|
| 440 |
+
| 0.2261 | 16200 | 7.7731 |
|
| 441 |
+
| 0.2275 | 16300 | 7.8508 |
|
| 442 |
+
| 0.2288 | 16400 | 7.8087 |
|
| 443 |
+
| 0.2302 | 16500 | 7.7959 |
|
| 444 |
+
| 0.2316 | 16600 | 7.7857 |
|
| 445 |
+
| 0.2330 | 16700 | 7.7946 |
|
| 446 |
+
| 0.2344 | 16800 | 7.7884 |
|
| 447 |
+
| 0.2358 | 16900 | 7.8226 |
|
| 448 |
+
| 0.2372 | 17000 | 7.7811 |
|
| 449 |
+
| 0.2386 | 17100 | 7.778 |
|
| 450 |
+
| 0.2400 | 17200 | 7.7825 |
|
| 451 |
+
| 0.2414 | 17300 | 7.782 |
|
| 452 |
+
| 0.2428 | 17400 | 7.8164 |
|
| 453 |
+
| 0.2442 | 17500 | 7.7514 |
|
| 454 |
+
| 0.2456 | 17600 | 7.7744 |
|
| 455 |
+
| 0.2470 | 17700 | 7.7974 |
|
| 456 |
+
| 0.2484 | 17800 | 7.7913 |
|
| 457 |
+
| 0.2498 | 17900 | 7.757 |
|
| 458 |
+
| 0.2512 | 18000 | 7.7724 |
|
| 459 |
+
| 0.2526 | 18100 | 7.7772 |
|
| 460 |
+
| 0.2540 | 18200 | 7.7723 |
|
| 461 |
+
| 0.2554 | 18300 | 7.753 |
|
| 462 |
+
| 0.2568 | 18400 | 7.8055 |
|
| 463 |
+
| 0.2581 | 18500 | 7.7878 |
|
| 464 |
+
| 0.2595 | 18600 | 7.7822 |
|
| 465 |
+
| 0.2609 | 18700 | 7.7923 |
|
| 466 |
+
| 0.2623 | 18800 | 7.8378 |
|
| 467 |
+
| 0.2637 | 18900 | 7.8226 |
|
| 468 |
+
| 0.2651 | 19000 | 7.8015 |
|
| 469 |
+
| 0.2665 | 19100 | 7.7355 |
|
| 470 |
+
| 0.2679 | 19200 | 7.789 |
|
| 471 |
+
| 0.2693 | 19300 | 7.7473 |
|
| 472 |
+
| 0.2707 | 19400 | 7.7521 |
|
| 473 |
+
| 0.2721 | 19500 | 7.7867 |
|
| 474 |
+
| 0.2735 | 19600 | 7.7597 |
|
| 475 |
+
| 0.2749 | 19700 | 7.7506 |
|
| 476 |
+
| 0.2763 | 19800 | 7.732 |
|
| 477 |
+
| 0.2777 | 19900 | 7.7288 |
|
| 478 |
+
| 0.2791 | 20000 | 7.7317 |
|
| 479 |
+
| 0.2805 | 20100 | 7.7495 |
|
| 480 |
+
| 0.2819 | 20200 | 7.7236 |
|
| 481 |
+
| 0.2833 | 20300 | 7.7489 |
|
| 482 |
+
| 0.2847 | 20400 | 7.7592 |
|
| 483 |
+
| 0.2861 | 20500 | 7.7455 |
|
| 484 |
+
| 0.2875 | 20600 | 7.7623 |
|
| 485 |
+
| 0.2888 | 20700 | 7.7774 |
|
| 486 |
+
| 0.2902 | 20800 | 7.7485 |
|
| 487 |
+
| 0.2916 | 20900 | 7.7043 |
|
| 488 |
+
| 0.2930 | 21000 | 7.8039 |
|
| 489 |
+
| 0.2944 | 21100 | 7.7383 |
|
| 490 |
+
| 0.2958 | 21200 | 7.759 |
|
| 491 |
+
| 0.2972 | 21300 | 7.7362 |
|
| 492 |
+
| 0.2986 | 21400 | 7.7788 |
|
| 493 |
+
| 0.3000 | 21500 | 7.7244 |
|
| 494 |
+
| 0.3014 | 21600 | 7.72 |
|
| 495 |
+
| 0.3028 | 21700 | 7.7453 |
|
| 496 |
+
| 0.3042 | 21800 | 7.729 |
|
| 497 |
+
| 0.3056 | 21900 | 7.7735 |
|
| 498 |
+
| 0.3070 | 22000 | 7.7185 |
|
| 499 |
+
| 0.3084 | 22100 | 7.7641 |
|
| 500 |
+
| 0.3098 | 22200 | 7.7293 |
|
| 501 |
+
| 0.3112 | 22300 | 7.7401 |
|
| 502 |
+
| 0.3126 | 22400 | 7.725 |
|
| 503 |
+
| 0.3140 | 22500 | 7.7315 |
|
| 504 |
+
| 0.3154 | 22600 | 7.716 |
|
| 505 |
+
| 0.3168 | 22700 | 7.7576 |
|
| 506 |
+
| 0.3182 | 22800 | 7.7088 |
|
| 507 |
+
| 0.3195 | 22900 | 7.7428 |
|
| 508 |
+
| 0.3209 | 23000 | 7.7266 |
|
| 509 |
+
| 0.3223 | 23100 | 7.7246 |
|
| 510 |
+
| 0.3237 | 23200 | 7.7084 |
|
| 511 |
+
| 0.3251 | 23300 | 7.7094 |
|
| 512 |
+
| 0.3265 | 23400 | 7.7081 |
|
| 513 |
+
| 0.3279 | 23500 | 7.7472 |
|
| 514 |
+
| 0.3293 | 23600 | 7.7581 |
|
| 515 |
+
| 0.3307 | 23700 | 7.7264 |
|
| 516 |
+
| 0.3321 | 23800 | 7.7262 |
|
| 517 |
+
| 0.3335 | 23900 | 7.7252 |
|
| 518 |
+
| 0.3349 | 24000 | 7.7219 |
|
| 519 |
+
| 0.3363 | 24100 | 7.706 |
|
| 520 |
+
| 0.3377 | 24200 | 7.7372 |
|
| 521 |
+
| 0.3391 | 24300 | 7.6965 |
|
| 522 |
+
| 0.3405 | 24400 | 7.6865 |
|
| 523 |
+
| 0.3419 | 24500 | 7.6798 |
|
| 524 |
+
| 0.3433 | 24600 | 7.6962 |
|
| 525 |
+
| 0.3447 | 24700 | 7.701 |
|
| 526 |
+
| 0.3461 | 24800 | 7.6722 |
|
| 527 |
+
| 0.3475 | 24900 | 7.7453 |
|
| 528 |
+
| 0.3489 | 25000 | 7.6463 |
|
| 529 |
+
| 0.3502 | 25100 | 7.7256 |
|
| 530 |
+
| 0.3516 | 25200 | 7.693 |
|
| 531 |
+
| 0.3530 | 25300 | 7.7306 |
|
| 532 |
+
| 0.3544 | 25400 | 7.7037 |
|
| 533 |
+
| 0.3558 | 25500 | 7.6733 |
|
| 534 |
+
| 0.3572 | 25600 | 7.7202 |
|
| 535 |
+
| 0.3586 | 25700 | 7.6866 |
|
| 536 |
+
| 0.3600 | 25800 | 7.715 |
|
| 537 |
+
| 0.3614 | 25900 | 7.6925 |
|
| 538 |
+
| 0.3628 | 26000 | 7.6961 |
|
| 539 |
+
| 0.3642 | 26100 | 7.6752 |
|
| 540 |
+
| 0.3656 | 26200 | 7.7377 |
|
| 541 |
+
| 0.3670 | 26300 | 7.6744 |
|
| 542 |
+
| 0.3684 | 26400 | 7.6698 |
|
| 543 |
+
| 0.3698 | 26500 | 7.6931 |
|
| 544 |
+
| 0.3712 | 26600 | 7.6789 |
|
| 545 |
+
| 0.3726 | 26700 | 7.6736 |
|
| 546 |
+
| 0.3740 | 26800 | 7.6918 |
|
| 547 |
+
| 0.3754 | 26900 | 7.7129 |
|
| 548 |
+
| 0.3768 | 27000 | 7.7179 |
|
| 549 |
+
| 0.3782 | 27100 | 7.6747 |
|
| 550 |
+
| 0.3795 | 27200 | 7.6809 |
|
| 551 |
+
| 0.3809 | 27300 | 7.6803 |
|
| 552 |
+
| 0.3823 | 27400 | 7.6777 |
|
| 553 |
+
| 0.3837 | 27500 | 7.6702 |
|
| 554 |
+
| 0.3851 | 27600 | 7.7005 |
|
| 555 |
+
| 0.3865 | 27700 | 7.6671 |
|
| 556 |
+
| 0.3879 | 27800 | 7.6873 |
|
| 557 |
+
| 0.3893 | 27900 | 7.6919 |
|
| 558 |
+
| 0.3907 | 28000 | 7.6987 |
|
| 559 |
+
| 0.3921 | 28100 | 7.6641 |
|
| 560 |
+
| 0.3935 | 28200 | 7.6449 |
|
| 561 |
+
| 0.3949 | 28300 | 7.6715 |
|
| 562 |
+
| 0.3963 | 28400 | 7.6672 |
|
| 563 |
+
| 0.3977 | 28500 | 7.6796 |
|
| 564 |
+
| 0.3991 | 28600 | 7.7085 |
|
| 565 |
+
| 0.4005 | 28700 | 7.6557 |
|
| 566 |
+
| 0.4019 | 28800 | 7.6592 |
|
| 567 |
+
| 0.4033 | 28900 | 7.6695 |
|
| 568 |
+
| 0.4047 | 29000 | 7.6734 |
|
| 569 |
+
| 0.4061 | 29100 | 7.6499 |
|
| 570 |
+
| 0.4075 | 29200 | 7.6472 |
|
| 571 |
+
| 0.4089 | 29300 | 7.6705 |
|
| 572 |
+
| 0.4102 | 29400 | 7.6856 |
|
| 573 |
+
| 0.4116 | 29500 | 7.6474 |
|
| 574 |
+
| 0.4130 | 29600 | 7.6581 |
|
| 575 |
+
| 0.4144 | 29700 | 7.6699 |
|
| 576 |
+
| 0.4158 | 29800 | 7.6693 |
|
| 577 |
+
| 0.4172 | 29900 | 7.6716 |
|
| 578 |
+
| 0.4186 | 30000 | 7.6594 |
|
| 579 |
+
| 0.4200 | 30100 | 7.6391 |
|
| 580 |
+
| 0.4214 | 30200 | 7.6758 |
|
| 581 |
+
| 0.4228 | 30300 | 7.652 |
|
| 582 |
+
| 0.4242 | 30400 | 7.6312 |
|
| 583 |
+
| 0.4256 | 30500 | 7.6538 |
|
| 584 |
+
| 0.4270 | 30600 | 7.6959 |
|
| 585 |
+
| 0.4284 | 30700 | 7.7324 |
|
| 586 |
+
| 0.4298 | 30800 | 7.6529 |
|
| 587 |
+
| 0.4312 | 30900 | 7.6528 |
|
| 588 |
+
| 0.4326 | 31000 | 7.7036 |
|
| 589 |
+
| 0.4340 | 31100 | 7.6794 |
|
| 590 |
+
| 0.4354 | 31200 | 7.6603 |
|
| 591 |
+
| 0.4368 | 31300 | 7.6372 |
|
| 592 |
+
| 0.4382 | 31400 | 7.6427 |
|
| 593 |
+
| 0.4396 | 31500 | 7.6852 |
|
| 594 |
+
| 0.4409 | 31600 | 7.6987 |
|
| 595 |
+
| 0.4423 | 31700 | 7.6385 |
|
| 596 |
+
| 0.4437 | 31800 | 7.701 |
|
| 597 |
+
| 0.4451 | 31900 | 7.6702 |
|
| 598 |
+
| 0.4465 | 32000 | 7.6551 |
|
| 599 |
+
| 0.4479 | 32100 | 7.6464 |
|
| 600 |
+
| 0.4493 | 32200 | 7.667 |
|
| 601 |
+
| 0.4507 | 32300 | 7.628 |
|
| 602 |
+
| 0.4521 | 32400 | 7.7012 |
|
| 603 |
+
| 0.4535 | 32500 | 7.6333 |
|
| 604 |
+
| 0.4549 | 32600 | 7.6707 |
|
| 605 |
+
| 0.4563 | 32700 | 7.6304 |
|
| 606 |
+
| 0.4577 | 32800 | 7.6719 |
|
| 607 |
+
| 0.4591 | 32900 | 7.6744 |
|
| 608 |
+
| 0.4605 | 33000 | 7.7102 |
|
| 609 |
+
| 0.4619 | 33100 | 7.6918 |
|
| 610 |
+
| 0.4633 | 33200 | 7.7018 |
|
| 611 |
+
| 0.4647 | 33300 | 7.6131 |
|
| 612 |
+
| 0.4661 | 33400 | 7.6476 |
|
| 613 |
+
| 0.4675 | 33500 | 7.6594 |
|
| 614 |
+
| 0.4689 | 33600 | 7.6301 |
|
| 615 |
+
| 0.4703 | 33700 | 7.6134 |
|
| 616 |
+
| 0.4716 | 33800 | 7.7383 |
|
| 617 |
+
| 0.4730 | 33900 | 7.6253 |
|
| 618 |
+
| 0.4744 | 34000 | 7.662 |
|
| 619 |
+
| 0.4758 | 34100 | 7.6341 |
|
| 620 |
+
| 0.4772 | 34200 | 7.6622 |
|
| 621 |
+
| 0.4786 | 34300 | 7.6429 |
|
| 622 |
+
| 0.4800 | 34400 | 7.6777 |
|
| 623 |
+
| 0.4814 | 34500 | 7.6089 |
|
| 624 |
+
| 0.4828 | 34600 | 7.6382 |
|
| 625 |
+
| 0.4842 | 34700 | 7.6324 |
|
| 626 |
+
| 0.4856 | 34800 | 7.6176 |
|
| 627 |
+
| 0.4870 | 34900 | 7.624 |
|
| 628 |
+
| 0.4884 | 35000 | 7.6163 |
|
| 629 |
+
| 0.4898 | 35100 | 7.6503 |
|
| 630 |
+
| 0.4912 | 35200 | 7.6609 |
|
| 631 |
+
| 0.4926 | 35300 | 7.6587 |
|
| 632 |
+
| 0.4940 | 35400 | 7.5999 |
|
| 633 |
+
| 0.4954 | 35500 | 7.586 |
|
| 634 |
+
| 0.4968 | 35600 | 7.6585 |
|
| 635 |
+
| 0.4982 | 35700 | 7.7349 |
|
| 636 |
+
| 0.4996 | 35800 | 7.642 |
|
| 637 |
+
| 0.5009 | 35900 | 7.646 |
|
| 638 |
+
| 0.5023 | 36000 | 7.5942 |
|
| 639 |
+
| 0.5037 | 36100 | 7.6477 |
|
| 640 |
+
| 0.5051 | 36200 | 7.6259 |
|
| 641 |
+
| 0.5065 | 36300 | 7.5926 |
|
| 642 |
+
| 0.5079 | 36400 | 7.6166 |
|
| 643 |
+
| 0.5093 | 36500 | 7.6323 |
|
| 644 |
+
| 0.5107 | 36600 | 7.6324 |
|
| 645 |
+
| 0.5121 | 36700 | 7.6411 |
|
| 646 |
+
| 0.5135 | 36800 | 7.6343 |
|
| 647 |
+
| 0.5149 | 36900 | 7.6313 |
|
| 648 |
+
| 0.5163 | 37000 | 7.6187 |
|
| 649 |
+
| 0.5177 | 37100 | 7.6545 |
|
| 650 |
+
| 0.5191 | 37200 | 7.6555 |
|
| 651 |
+
| 0.5205 | 37300 | 7.6984 |
|
| 652 |
+
| 0.5219 | 37400 | 7.6638 |
|
| 653 |
+
| 0.5233 | 37500 | 7.6093 |
|
| 654 |
+
| 0.5247 | 37600 | 7.5925 |
|
| 655 |
+
| 0.5261 | 37700 | 7.6281 |
|
| 656 |
+
| 0.5275 | 37800 | 7.6349 |
|
| 657 |
+
| 0.5289 | 37900 | 7.6152 |
|
| 658 |
+
| 0.5303 | 38000 | 7.6531 |
|
| 659 |
+
| 0.5316 | 38100 | 7.6078 |
|
| 660 |
+
| 0.5330 | 38200 | 7.6775 |
|
| 661 |
+
| 0.5344 | 38300 | 7.6268 |
|
| 662 |
+
| 0.5358 | 38400 | 7.641 |
|
| 663 |
+
| 0.5372 | 38500 | 7.6721 |
|
| 664 |
+
| 0.5386 | 38600 | 7.6069 |
|
| 665 |
+
| 0.5400 | 38700 | 7.6174 |
|
| 666 |
+
| 0.5414 | 38800 | 7.6407 |
|
| 667 |
+
| 0.5428 | 38900 | 7.6226 |
|
| 668 |
+
| 0.5442 | 39000 | 7.5843 |
|
| 669 |
+
| 0.5456 | 39100 | 7.6588 |
|
| 670 |
+
| 0.5470 | 39200 | 7.6405 |
|
| 671 |
+
| 0.5484 | 39300 | 7.5908 |
|
| 672 |
+
| 0.5498 | 39400 | 7.6203 |
|
| 673 |
+
| 0.5512 | 39500 | 7.608 |
|
| 674 |
+
| 0.5526 | 39600 | 7.6177 |
|
| 675 |
+
| 0.5540 | 39700 | 7.606 |
|
| 676 |
+
| 0.5554 | 39800 | 7.7102 |
|
| 677 |
+
| 0.5568 | 39900 | 7.6252 |
|
| 678 |
+
| 0.5582 | 40000 | 7.6235 |
|
| 679 |
+
| 0.5596 | 40100 | 7.6325 |
|
| 680 |
+
| 0.5610 | 40200 | 7.6146 |
|
| 681 |
+
| 0.5623 | 40300 | 7.6386 |
|
| 682 |
+
| 0.5637 | 40400 | 7.6189 |
|
| 683 |
+
| 0.5651 | 40500 | 7.638 |
|
| 684 |
+
| 0.5665 | 40600 | 7.5859 |
|
| 685 |
+
| 0.5679 | 40700 | 7.5737 |
|
| 686 |
+
| 0.5693 | 40800 | 7.6331 |
|
| 687 |
+
| 0.5707 | 40900 | 7.6265 |
|
| 688 |
+
| 0.5721 | 41000 | 7.6475 |
|
| 689 |
+
| 0.5735 | 41100 | 7.5966 |
|
| 690 |
+
| 0.5749 | 41200 | 7.6331 |
|
| 691 |
+
| 0.5763 | 41300 | 7.5655 |
|
| 692 |
+
| 0.5777 | 41400 | 7.6727 |
|
| 693 |
+
| 0.5791 | 41500 | 7.5972 |
|
| 694 |
+
| 0.5805 | 41600 | 7.5911 |
|
| 695 |
+
| 0.5819 | 41700 | 7.6734 |
|
| 696 |
+
| 0.5833 | 41800 | 7.6528 |
|
| 697 |
+
| 0.5847 | 41900 | 7.6063 |
|
| 698 |
+
| 0.5861 | 42000 | 7.6496 |
|
| 699 |
+
| 0.5875 | 42100 | 7.6225 |
|
| 700 |
+
| 0.5889 | 42200 | 7.6863 |
|
| 701 |
+
| 0.5903 | 42300 | 7.6145 |
|
| 702 |
+
| 0.5916 | 42400 | 7.6072 |
|
| 703 |
+
| 0.5930 | 42500 | 7.625 |
|
| 704 |
+
| 0.5944 | 42600 | 7.6087 |
|
| 705 |
+
| 0.5958 | 42700 | 7.6622 |
|
| 706 |
+
| 0.5972 | 42800 | 7.5619 |
|
| 707 |
+
| 0.5986 | 42900 | 7.6563 |
|
| 708 |
+
| 0.6000 | 43000 | 7.5958 |
|
| 709 |
+
| 0.6014 | 43100 | 7.6107 |
|
| 710 |
+
| 0.6028 | 43200 | 7.6208 |
|
| 711 |
+
| 0.6042 | 43300 | 7.5973 |
|
| 712 |
+
| 0.6056 | 43400 | 7.5928 |
|
| 713 |
+
| 0.6070 | 43500 | 7.637 |
|
| 714 |
+
| 0.6084 | 43600 | 7.5659 |
|
| 715 |
+
| 0.6098 | 43700 | 7.5921 |
|
| 716 |
+
| 0.6112 | 43800 | 7.5961 |
|
| 717 |
+
| 0.6126 | 43900 | 7.5614 |
|
| 718 |
+
| 0.6140 | 44000 | 7.6366 |
|
| 719 |
+
| 0.6154 | 44100 | 7.5947 |
|
| 720 |
+
| 0.6168 | 44200 | 7.5976 |
|
| 721 |
+
| 0.6182 | 44300 | 7.6406 |
|
| 722 |
+
| 0.6196 | 44400 | 7.585 |
|
| 723 |
+
| 0.6210 | 44500 | 7.5722 |
|
| 724 |
+
| 0.6223 | 44600 | 7.6193 |
|
| 725 |
+
| 0.6237 | 44700 | 7.6249 |
|
| 726 |
+
| 0.6251 | 44800 | 7.6208 |
|
| 727 |
+
| 0.6265 | 44900 | 7.6293 |
|
| 728 |
+
| 0.6279 | 45000 | 7.6023 |
|
| 729 |
+
| 0.6293 | 45100 | 7.5996 |
|
| 730 |
+
| 0.6307 | 45200 | 7.5553 |
|
| 731 |
+
| 0.6321 | 45300 | 7.5996 |
|
| 732 |
+
| 0.6335 | 45400 | 7.5994 |
|
| 733 |
+
| 0.6349 | 45500 | 7.6691 |
|
| 734 |
+
| 0.6363 | 45600 | 7.6051 |
|
| 735 |
+
| 0.6377 | 45700 | 7.6589 |
|
| 736 |
+
| 0.6391 | 45800 | 7.6217 |
|
| 737 |
+
| 0.6405 | 45900 | 7.6053 |
|
| 738 |
+
| 0.6419 | 46000 | 7.6082 |
|
| 739 |
+
| 0.6433 | 46100 | 7.5913 |
|
| 740 |
+
| 0.6447 | 46200 | 7.5742 |
|
| 741 |
+
| 0.6461 | 46300 | 7.597 |
|
| 742 |
+
| 0.6475 | 46400 | 7.5759 |
|
| 743 |
+
| 0.6489 | 46500 | 7.5964 |
|
| 744 |
+
| 0.6503 | 46600 | 7.6719 |
|
| 745 |
+
| 0.6517 | 46700 | 7.605 |
|
| 746 |
+
| 0.6530 | 46800 | 7.5705 |
|
| 747 |
+
| 0.6544 | 46900 | 7.6292 |
|
| 748 |
+
| 0.6558 | 47000 | 7.5978 |
|
| 749 |
+
| 0.6572 | 47100 | 7.5525 |
|
| 750 |
+
| 0.6586 | 47200 | 7.5838 |
|
| 751 |
+
| 0.6600 | 47300 | 7.5672 |
|
| 752 |
+
| 0.6614 | 47400 | 7.6041 |
|
| 753 |
+
| 0.6628 | 47500 | 7.6255 |
|
| 754 |
+
| 0.6642 | 47600 | 7.5415 |
|
| 755 |
+
| 0.6656 | 47700 | 7.61 |
|
| 756 |
+
| 0.6670 | 47800 | 7.573 |
|
| 757 |
+
| 0.6684 | 47900 | 7.6413 |
|
| 758 |
+
| 0.6698 | 48000 | 7.6277 |
|
| 759 |
+
| 0.6712 | 48100 | 7.5903 |
|
| 760 |
+
| 0.6726 | 48200 | 7.6542 |
|
| 761 |
+
| 0.6740 | 48300 | 7.5772 |
|
| 762 |
+
| 0.6754 | 48400 | 7.5991 |
|
| 763 |
+
| 0.6768 | 48500 | 7.5853 |
|
| 764 |
+
| 0.6782 | 48600 | 7.5909 |
|
| 765 |
+
| 0.6796 | 48700 | 7.5912 |
|
| 766 |
+
| 0.6810 | 48800 | 7.6052 |
|
| 767 |
+
| 0.6824 | 48900 | 7.632 |
|
| 768 |
+
| 0.6837 | 49000 | 7.5851 |
|
| 769 |
+
| 0.6851 | 49100 | 7.6688 |
|
| 770 |
+
| 0.6865 | 49200 | 7.6091 |
|
| 771 |
+
| 0.6879 | 49300 | 7.5745 |
|
| 772 |
+
| 0.6893 | 49400 | 7.5833 |
|
| 773 |
+
| 0.6907 | 49500 | 7.5777 |
|
| 774 |
+
| 0.6921 | 49600 | 7.5637 |
|
| 775 |
+
| 0.6935 | 49700 | 7.5622 |
|
| 776 |
+
| 0.6949 | 49800 | 7.5633 |
|
| 777 |
+
| 0.6963 | 49900 | 7.6023 |
|
| 778 |
+
| 0.6977 | 50000 | 7.6103 |
|
| 779 |
+
| 0.6991 | 50100 | 7.547 |
|
| 780 |
+
| 0.7005 | 50200 | 7.5907 |
|
| 781 |
+
| 0.7019 | 50300 | 7.5882 |
|
| 782 |
+
| 0.7033 | 50400 | 7.5875 |
|
| 783 |
+
| 0.7047 | 50500 | 7.5909 |
|
| 784 |
+
| 0.7061 | 50600 | 7.6021 |
|
| 785 |
+
| 0.7075 | 50700 | 7.549 |
|
| 786 |
+
| 0.7089 | 50800 | 7.6511 |
|
| 787 |
+
| 0.7103 | 50900 | 7.6606 |
|
| 788 |
+
| 0.7117 | 51000 | 7.5967 |
|
| 789 |
+
| 0.7130 | 51100 | 7.5722 |
|
| 790 |
+
| 0.7144 | 51200 | 7.6129 |
|
| 791 |
+
| 0.7158 | 51300 | 7.5736 |
|
| 792 |
+
| 0.7172 | 51400 | 7.5799 |
|
| 793 |
+
| 0.7186 | 51500 | 7.6209 |
|
| 794 |
+
| 0.7200 | 51600 | 7.595 |
|
| 795 |
+
| 0.7214 | 51700 | 7.5484 |
|
| 796 |
+
| 0.7228 | 51800 | 7.5999 |
|
| 797 |
+
| 0.7242 | 51900 | 7.5638 |
|
| 798 |
+
| 0.7256 | 52000 | 7.5654 |
|
| 799 |
+
| 0.7270 | 52100 | 7.6303 |
|
| 800 |
+
| 0.7284 | 52200 | 7.5485 |
|
| 801 |
+
| 0.7298 | 52300 | 7.676 |
|
| 802 |
+
| 0.7312 | 52400 | 7.6376 |
|
| 803 |
+
| 0.7326 | 52500 | 7.557 |
|
| 804 |
+
| 0.7340 | 52600 | 7.5631 |
|
| 805 |
+
| 0.7354 | 52700 | 7.6637 |
|
| 806 |
+
| 0.7368 | 52800 | 7.588 |
|
| 807 |
+
| 0.7382 | 52900 | 7.5771 |
|
| 808 |
+
| 0.7396 | 53000 | 7.5766 |
|
| 809 |
+
| 0.7410 | 53100 | 7.5731 |
|
| 810 |
+
| 0.7424 | 53200 | 7.508 |
|
| 811 |
+
| 0.7437 | 53300 | 7.6023 |
|
| 812 |
+
| 0.7451 | 53400 | 7.5796 |
|
| 813 |
+
| 0.7465 | 53500 | 7.5593 |
|
| 814 |
+
| 0.7479 | 53600 | 7.5516 |
|
| 815 |
+
| 0.7493 | 53700 | 7.5973 |
|
| 816 |
+
| 0.7507 | 53800 | 7.5868 |
|
| 817 |
+
| 0.7521 | 53900 | 7.623 |
|
| 818 |
+
| 0.7535 | 54000 | 7.5972 |
|
| 819 |
+
| 0.7549 | 54100 | 7.6304 |
|
| 820 |
+
| 0.7563 | 54200 | 7.5927 |
|
| 821 |
+
| 0.7577 | 54300 | 7.5351 |
|
| 822 |
+
| 0.7591 | 54400 | 7.5732 |
|
| 823 |
+
| 0.7605 | 54500 | 7.6676 |
|
| 824 |
+
| 0.7619 | 54600 | 7.6103 |
|
| 825 |
+
| 0.7633 | 54700 | 7.5572 |
|
| 826 |
+
| 0.7647 | 54800 | 7.574 |
|
| 827 |
+
| 0.7661 | 54900 | 7.555 |
|
| 828 |
+
| 0.7675 | 55000 | 7.6347 |
|
| 829 |
+
| 0.7689 | 55100 | 7.5827 |
|
| 830 |
+
| 0.7703 | 55200 | 7.678 |
|
| 831 |
+
| 0.7717 | 55300 | 7.5577 |
|
| 832 |
+
| 0.7731 | 55400 | 7.5606 |
|
| 833 |
+
| 0.7744 | 55500 | 7.5284 |
|
| 834 |
+
| 0.7758 | 55600 | 7.5561 |
|
| 835 |
+
| 0.7772 | 55700 | 7.6569 |
|
| 836 |
+
| 0.7786 | 55800 | 7.5604 |
|
| 837 |
+
| 0.7800 | 55900 | 7.6444 |
|
| 838 |
+
| 0.7814 | 56000 | 7.602 |
|
| 839 |
+
| 0.7828 | 56100 | 7.5532 |
|
| 840 |
+
| 0.7842 | 56200 | 7.5524 |
|
| 841 |
+
| 0.7856 | 56300 | 7.654 |
|
| 842 |
+
| 0.7870 | 56400 | 7.5799 |
|
| 843 |
+
| 0.7884 | 56500 | 7.5609 |
|
| 844 |
+
| 0.7898 | 56600 | 7.5625 |
|
| 845 |
+
| 0.7912 | 56700 | 7.571 |
|
| 846 |
+
| 0.7926 | 56800 | 7.5126 |
|
| 847 |
+
| 0.7940 | 56900 | 7.5644 |
|
| 848 |
+
| 0.7954 | 57000 | 7.5508 |
|
| 849 |
+
| 0.7968 | 57100 | 7.5183 |
|
| 850 |
+
| 0.7982 | 57200 | 7.5749 |
|
| 851 |
+
| 0.7996 | 57300 | 7.5339 |
|
| 852 |
+
| 0.8010 | 57400 | 7.5739 |
|
| 853 |
+
| 0.8024 | 57500 | 7.5492 |
|
| 854 |
+
| 0.8038 | 57600 | 7.5781 |
|
| 855 |
+
| 0.8051 | 57700 | 7.5753 |
|
| 856 |
+
| 0.8065 | 57800 | 7.5485 |
|
| 857 |
+
| 0.8079 | 57900 | 7.5608 |
|
| 858 |
+
| 0.8093 | 58000 | 7.5515 |
|
| 859 |
+
| 0.8107 | 58100 | 7.6011 |
|
| 860 |
+
| 0.8121 | 58200 | 7.6072 |
|
| 861 |
+
| 0.8135 | 58300 | 7.5615 |
|
| 862 |
+
| 0.8149 | 58400 | 7.5583 |
|
| 863 |
+
| 0.8163 | 58500 | 7.5423 |
|
| 864 |
+
| 0.8177 | 58600 | 7.5852 |
|
| 865 |
+
| 0.8191 | 58700 | 7.5612 |
|
| 866 |
+
| 0.8205 | 58800 | 7.5808 |
|
| 867 |
+
| 0.8219 | 58900 | 7.5888 |
|
| 868 |
+
| 0.8233 | 59000 | 7.6449 |
|
| 869 |
+
| 0.8247 | 59100 | 7.6599 |
|
| 870 |
+
| 0.8261 | 59200 | 7.573 |
|
| 871 |
+
| 0.8275 | 59300 | 7.5533 |
|
| 872 |
+
| 0.8289 | 59400 | 7.5423 |
|
| 873 |
+
| 0.8303 | 59500 | 7.5879 |
|
| 874 |
+
| 0.8317 | 59600 | 7.5699 |
|
| 875 |
+
| 0.8331 | 59700 | 7.5792 |
|
| 876 |
+
| 0.8344 | 59800 | 7.5552 |
|
| 877 |
+
| 0.8358 | 59900 | 7.5982 |
|
| 878 |
+
| 0.8372 | 60000 | 7.5984 |
|
| 879 |
+
| 0.8386 | 60100 | 7.5383 |
|
| 880 |
+
| 0.8400 | 60200 | 7.5518 |
|
| 881 |
+
| 0.8414 | 60300 | 7.5587 |
|
| 882 |
+
| 0.8428 | 60400 | 7.5152 |
|
| 883 |
+
| 0.8442 | 60500 | 7.5945 |
|
| 884 |
+
| 0.8456 | 60600 | 7.5674 |
|
| 885 |
+
| 0.8470 | 60700 | 7.5527 |
|
| 886 |
+
| 0.8484 | 60800 | 7.5941 |
|
| 887 |
+
| 0.8498 | 60900 | 7.5964 |
|
| 888 |
+
| 0.8512 | 61000 | 7.5625 |
|
| 889 |
+
| 0.8526 | 61100 | 7.5526 |
|
| 890 |
+
| 0.8540 | 61200 | 7.5592 |
|
| 891 |
+
| 0.8554 | 61300 | 7.5593 |
|
| 892 |
+
| 0.8568 | 61400 | 7.5392 |
|
| 893 |
+
| 0.8582 | 61500 | 7.641 |
|
| 894 |
+
| 0.8596 | 61600 | 7.6258 |
|
| 895 |
+
| 0.8610 | 61700 | 7.6588 |
|
| 896 |
+
| 0.8624 | 61800 | 7.5707 |
|
| 897 |
+
| 0.8638 | 61900 | 7.5171 |
|
| 898 |
+
| 0.8651 | 62000 | 7.6107 |
|
| 899 |
+
| 0.8665 | 62100 | 7.6272 |
|
| 900 |
+
| 0.8679 | 62200 | 7.5549 |
|
| 901 |
+
| 0.8693 | 62300 | 7.5535 |
|
| 902 |
+
| 0.8707 | 62400 | 7.6454 |
|
| 903 |
+
| 0.8721 | 62500 | 7.5498 |
|
| 904 |
+
| 0.8735 | 62600 | 7.5898 |
|
| 905 |
+
| 0.8749 | 62700 | 7.5461 |
|
| 906 |
+
| 0.8763 | 62800 | 7.5611 |
|
| 907 |
+
| 0.8777 | 62900 | 7.6068 |
|
| 908 |
+
| 0.8791 | 63000 | 7.6001 |
|
| 909 |
+
| 0.8805 | 63100 | 7.5407 |
|
| 910 |
+
| 0.8819 | 63200 | 7.5961 |
|
| 911 |
+
| 0.8833 | 63300 | 7.5839 |
|
| 912 |
+
| 0.8847 | 63400 | 7.5426 |
|
| 913 |
+
| 0.8861 | 63500 | 7.6011 |
|
| 914 |
+
| 0.8875 | 63600 | 7.5708 |
|
| 915 |
+
| 0.8889 | 63700 | 7.5964 |
|
| 916 |
+
| 0.8903 | 63800 | 7.5704 |
|
| 917 |
+
| 0.8917 | 63900 | 7.5372 |
|
| 918 |
+
| 0.8931 | 64000 | 7.5835 |
|
| 919 |
+
| 0.8945 | 64100 | 7.5483 |
|
| 920 |
+
| 0.8958 | 64200 | 7.544 |
|
| 921 |
+
| 0.8972 | 64300 | 7.5677 |
|
| 922 |
+
| 0.8986 | 64400 | 7.5636 |
|
| 923 |
+
| 0.9000 | 64500 | 7.5914 |
|
| 924 |
+
| 0.9014 | 64600 | 7.5789 |
|
| 925 |
+
| 0.9028 | 64700 | 7.5666 |
|
| 926 |
+
| 0.9042 | 64800 | 7.5866 |
|
| 927 |
+
| 0.9056 | 64900 | 7.6195 |
|
| 928 |
+
| 0.9070 | 65000 | 7.5388 |
|
| 929 |
+
| 0.9084 | 65100 | 7.5821 |
|
| 930 |
+
| 0.9098 | 65200 | 7.6767 |
|
| 931 |
+
| 0.9112 | 65300 | 7.6625 |
|
| 932 |
+
| 0.9126 | 65400 | 7.5812 |
|
| 933 |
+
| 0.9140 | 65500 | 7.5026 |
|
| 934 |
+
| 0.9154 | 65600 | 7.5524 |
|
| 935 |
+
| 0.9168 | 65700 | 7.5851 |
|
| 936 |
+
| 0.9182 | 65800 | 7.5762 |
|
| 937 |
+
| 0.9196 | 65900 | 7.5466 |
|
| 938 |
+
| 0.9210 | 66000 | 7.6039 |
|
| 939 |
+
| 0.9224 | 66100 | 7.6041 |
|
| 940 |
+
| 0.9238 | 66200 | 7.5805 |
|
| 941 |
+
| 0.9252 | 66300 | 7.6334 |
|
| 942 |
+
| 0.9265 | 66400 | 7.5348 |
|
| 943 |
+
| 0.9279 | 66500 | 7.6065 |
|
| 944 |
+
| 0.9293 | 66600 | 7.5003 |
|
| 945 |
+
| 0.9307 | 66700 | 7.5512 |
|
| 946 |
+
| 0.9321 | 66800 | 7.5404 |
|
| 947 |
+
| 0.9335 | 66900 | 7.6176 |
|
| 948 |
+
| 0.9349 | 67000 | 7.5634 |
|
| 949 |
+
| 0.9363 | 67100 | 7.5786 |
|
| 950 |
+
| 0.9377 | 67200 | 7.6327 |
|
| 951 |
+
| 0.9391 | 67300 | 7.5532 |
|
| 952 |
+
| 0.9405 | 67400 | 7.5362 |
|
| 953 |
+
| 0.9419 | 67500 | 7.5844 |
|
| 954 |
+
| 0.9433 | 67600 | 7.5632 |
|
| 955 |
+
| 0.9447 | 67700 | 7.553 |
|
| 956 |
+
| 0.9461 | 67800 | 7.5422 |
|
| 957 |
+
| 0.9475 | 67900 | 7.5483 |
|
| 958 |
+
| 0.9489 | 68000 | 7.5477 |
|
| 959 |
+
| 0.9503 | 68100 | 7.5423 |
|
| 960 |
+
| 0.9517 | 68200 | 7.5656 |
|
| 961 |
+
| 0.9531 | 68300 | 7.5573 |
|
| 962 |
+
| 0.9545 | 68400 | 7.525 |
|
| 963 |
+
| 0.9558 | 68500 | 7.55 |
|
| 964 |
+
| 0.9572 | 68600 | 7.5341 |
|
| 965 |
+
| 0.9586 | 68700 | 7.5318 |
|
| 966 |
+
| 0.9600 | 68800 | 7.5691 |
|
| 967 |
+
| 0.9614 | 68900 | 7.5793 |
|
| 968 |
+
| 0.9628 | 69000 | 7.5615 |
|
| 969 |
+
| 0.9642 | 69100 | 7.5348 |
|
| 970 |
+
| 0.9656 | 69200 | 7.5384 |
|
| 971 |
+
| 0.9670 | 69300 | 7.5392 |
|
| 972 |
+
| 0.9684 | 69400 | 7.5909 |
|
| 973 |
+
| 0.9698 | 69500 | 7.5587 |
|
| 974 |
+
| 0.9712 | 69600 | 7.5447 |
|
| 975 |
+
| 0.9726 | 69700 | 7.5731 |
|
| 976 |
+
| 0.9740 | 69800 | 7.5767 |
|
| 977 |
+
| 0.9754 | 69900 | 7.6208 |
|
| 978 |
+
| 0.9768 | 70000 | 7.5414 |
|
| 979 |
+
| 0.9782 | 70100 | 7.6061 |
|
| 980 |
+
| 0.9796 | 70200 | 7.6285 |
|
| 981 |
+
| 0.9810 | 70300 | 7.5533 |
|
| 982 |
+
| 0.9824 | 70400 | 7.5552 |
|
| 983 |
+
| 0.9838 | 70500 | 7.5479 |
|
| 984 |
+
| 0.9852 | 70600 | 7.571 |
|
| 985 |
+
| 0.9865 | 70700 | 7.6259 |
|
| 986 |
+
| 0.9879 | 70800 | 7.6366 |
|
| 987 |
+
| 0.9893 | 70900 | 7.5615 |
|
| 988 |
+
| 0.9907 | 71000 | 7.612 |
|
| 989 |
+
| 0.9921 | 71100 | 7.5309 |
|
| 990 |
+
| 0.9935 | 71200 | 7.5122 |
|
| 991 |
+
| 0.9949 | 71300 | 7.5692 |
|
| 992 |
+
| 0.9963 | 71400 | 7.6198 |
|
| 993 |
+
| 0.9977 | 71500 | 7.527 |
|
| 994 |
+
| 0.9991 | 71600 | 7.5496 |
|
| 995 |
+
|
| 996 |
+
</details>
|
| 997 |
+
|
| 998 |
+
### Framework Versions
|
| 999 |
+
- Python: 3.8.10
|
| 1000 |
+
- Sentence Transformers: 3.1.1
|
| 1001 |
+
- Transformers: 4.45.2
|
| 1002 |
+
- PyTorch: 2.4.1+cu118
|
| 1003 |
+
- Accelerate: 1.0.1
|
| 1004 |
+
- Datasets: 3.0.1
|
| 1005 |
+
- Tokenizers: 0.20.3
|
| 1006 |
+
|
| 1007 |
+
## Citation
|
| 1008 |
+
|
| 1009 |
+
### BibTeX
|
| 1010 |
+
|
| 1011 |
+
#### Sentence Transformers
|
| 1012 |
+
```bibtex
|
| 1013 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1014 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1015 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1016 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1017 |
+
month = "11",
|
| 1018 |
+
year = "2019",
|
| 1019 |
+
publisher = "Association for Computational Linguistics",
|
| 1020 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1021 |
+
}
|
| 1022 |
+
```
|
| 1023 |
+
|
| 1024 |
+
#### CoSENTLoss
|
| 1025 |
+
```bibtex
|
| 1026 |
+
@online{kexuefm-8847,
|
| 1027 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
| 1028 |
+
author={Su Jianlin},
|
| 1029 |
+
year={2022},
|
| 1030 |
+
month={Jan},
|
| 1031 |
+
url={https://kexue.fm/archives/8847},
|
| 1032 |
+
}
|
| 1033 |
+
```
|
| 1034 |
+
|
| 1035 |
+
<!--
|
| 1036 |
+
## Glossary
|
| 1037 |
+
|
| 1038 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1039 |
+
-->
|
| 1040 |
+
|
| 1041 |
+
<!--
|
| 1042 |
+
## Model Card Authors
|
| 1043 |
+
|
| 1044 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1045 |
+
-->
|
| 1046 |
+
|
| 1047 |
+
<!--
|
| 1048 |
+
## Model Card Contact
|
| 1049 |
+
|
| 1050 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1051 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 6,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.45.2",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 30522
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.1",
|
| 4 |
+
"transformers": "4.45.2",
|
| 5 |
+
"pytorch": "2.4.1+cu118"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:237c513261dfddde1c8e7aa3090f0aba61d3dd021b7873cbdfd4818d22a612fb
|
| 3 |
+
size 90864192
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"max_length": 128,
|
| 50 |
+
"model_max_length": 256,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "[PAD]",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "[SEP]",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"strip_accents": null,
|
| 59 |
+
"tokenize_chinese_chars": true,
|
| 60 |
+
"tokenizer_class": "BertTokenizer",
|
| 61 |
+
"truncation_side": "right",
|
| 62 |
+
"truncation_strategy": "longest_first",
|
| 63 |
+
"unk_token": "[UNK]"
|
| 64 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|