--- library_name: transformers language: - fr license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - CAENNAIS model-index: - name: speaker-segmentation-fine-tuned_CAENNAIS results: [] --- # speaker-segmentation-fine-tuned_CAENNAIS This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the CAENNAIS dataset. It achieves the following results on the evaluation set: - Loss: 0.7201 - Model Preparation Time: 0.0037 - Der: 0.3164 - False Alarm: 0.1145 - Missed Detection: 0.0684 - Confusion: 0.1335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.8687 | 1.0 | 61 | 0.8189 | 0.0037 | 0.3927 | 0.1128 | 0.0900 | 0.1899 | | 0.7991 | 2.0 | 122 | 0.7751 | 0.0037 | 0.3552 | 0.1158 | 0.0750 | 0.1644 | | 0.7269 | 3.0 | 183 | 0.7795 | 0.0037 | 0.3571 | 0.1269 | 0.0622 | 0.1680 | | 0.6891 | 4.0 | 244 | 0.7384 | 0.0037 | 0.3360 | 0.1233 | 0.0642 | 0.1485 | | 0.6723 | 5.0 | 305 | 0.7053 | 0.0037 | 0.3235 | 0.1017 | 0.0807 | 0.1411 | | 0.6409 | 6.0 | 366 | 0.7068 | 0.0037 | 0.3193 | 0.1142 | 0.0680 | 0.1372 | | 0.6345 | 7.0 | 427 | 0.7200 | 0.0037 | 0.3243 | 0.1150 | 0.0695 | 0.1398 | | 0.6087 | 8.0 | 488 | 0.7483 | 0.0037 | 0.3302 | 0.1241 | 0.0623 | 0.1438 | | 0.5997 | 9.0 | 549 | 0.7163 | 0.0037 | 0.3158 | 0.1139 | 0.0689 | 0.1330 | | 0.5976 | 10.0 | 610 | 0.7201 | 0.0037 | 0.3164 | 0.1145 | 0.0684 | 0.1335 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0