- README.md +113 -0
- config.json +22 -0
- generation_config.json +6 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +330 -0
- tokenization_codegen25.py +245 -0
- tokenizer_config.json +12 -0
README.md
CHANGED
|
@@ -1,3 +1,116 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# CodeGen2.5-7B-mono
|
| 6 |
+
|
| 7 |
+
Title: [**CodeGen2.5: Small, but mighty**](https://blog.salesforceairesearch.com/codegen25)
|
| 8 |
+
|
| 9 |
+
Authors: [Erik Nijkamp](https://eriknijkamp.com)\*, [Hiroaki Hayashi](https://hiroakih.me)\*, Yingbo Zhou, Caiming Xiong
|
| 10 |
+
|
| 11 |
+
(\* equal contribution)
|
| 12 |
+
|
| 13 |
+
## Model description
|
| 14 |
+
|
| 15 |
+
[CodeGen2.5](https://github.com/salesforce/CodeGen) is a family of autoregressive language models for **program synthesis**.
|
| 16 |
+
|
| 17 |
+
Building upon [CodeGen2](https://arxiv.org/abs/2305.02309), the model is trained on [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) for 1.4T tokens, achieving competitive results compared to StarCoderBase-15.5B with less than half the size.
|
| 18 |
+
|
| 19 |
+
Like CodeGen2, this model is capable of infilling, and supports multiple programming languages.
|
| 20 |
+
|
| 21 |
+
We then further train on Python, then on instruction data. We release all the models as follows:
|
| 22 |
+
|
| 23 |
+
* **CodeGen2.5-7B-multi**: Trained on StarCoderData. Licensed under Apache-2.0.
|
| 24 |
+
* **CodeGen2.5-7B-mono** (this repo): Further trained on additional Python tokens. Licensed under Apache-2.0.
|
| 25 |
+
* **CodeGen2.5-7B-instruct**: Further trained from CodeGen2.5-7B-mono on instruction data. *Research purposes only*.
|
| 26 |
+
|
| 27 |
+
## How to use
|
| 28 |
+
|
| 29 |
+
This model can be easily loaded using the `AutoModelForCausalLM` functionality.
|
| 30 |
+
|
| 31 |
+
### Pre-requisite
|
| 32 |
+
|
| 33 |
+
Please install OpenAI `tiktoken` for the tokenizer.
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
pip install tiktoken==0.4.0
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
### Causal sampling (code autocompletion)
|
| 40 |
+
|
| 41 |
+
For regular causal sampling, simply generate completions given the context:
|
| 42 |
+
```python
|
| 43 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 44 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-mono", trust_remote_code=True)
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen25-7b-mono")
|
| 46 |
+
|
| 47 |
+
text = "def hello_world():"
|
| 48 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
| 49 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
| 50 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### Infill sampling
|
| 54 |
+
|
| 55 |
+
For **infill** sampling, we follow the CodeGen2 format:
|
| 56 |
+
|
| 57 |
+
* `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill.
|
| 58 |
+
* `<sep>`: Separator token between the suffix and the infilled sample. See below.
|
| 59 |
+
* `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output.
|
| 60 |
+
|
| 61 |
+
For example, if we want to generate infill for the following cursor position of a function:
|
| 62 |
+
```python
|
| 63 |
+
def hello_world():
|
| 64 |
+
|
|
| 65 |
+
return name
|
| 66 |
+
```
|
| 67 |
+
we construct an input to the model by
|
| 68 |
+
|
| 69 |
+
1. Inserting `<mask_1>` token in place of cursor position
|
| 70 |
+
2. Append `<sep>` token to indicate the boundary
|
| 71 |
+
3. Insert another `<mask_1>` to indicate which mask we want to infill.
|
| 72 |
+
|
| 73 |
+
The final snippet looks as follows:
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-mono")
|
| 78 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2k-7b-mono")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def format(prefix, suffix):
|
| 82 |
+
return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>"
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
prefix = "def hello_world():\n "
|
| 86 |
+
suffix = " return name"
|
| 87 |
+
text = format(prefix, suffix)
|
| 88 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
| 89 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
| 90 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):])
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
You might want to truncate the model output with `<eom>`.
|
| 94 |
+
|
| 95 |
+
## Evaluation results
|
| 96 |
+
|
| 97 |
+
We evaluate our models on HumanEval and HumanEval-Infill.
|
| 98 |
+
Please refer to the [blog](https://blog.salesforceairesearch.com/codegen25) for more details.
|
| 99 |
+
|
| 100 |
+
## Intended use and limitations
|
| 101 |
+
|
| 102 |
+
As an autoregressive language model, CodeGen2.5 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them.
|
| 103 |
+
However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well.
|
| 104 |
+
|
| 105 |
+
## BibTeX entry and citation info
|
| 106 |
+
|
| 107 |
+
Please cite CodeGen2 paper:
|
| 108 |
+
|
| 109 |
+
```bibtex
|
| 110 |
+
@article{Nijkamp2023codegen2,
|
| 111 |
+
title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages},
|
| 112 |
+
author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo},
|
| 113 |
+
journal={arXiv preprint},
|
| 114 |
+
year={2023}
|
| 115 |
+
}
|
| 116 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LlamaForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"bos_token_id": 50256,
|
| 6 |
+
"eos_token_id": 50256,
|
| 7 |
+
"hidden_act": "silu",
|
| 8 |
+
"hidden_size": 4096,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"intermediate_size": 11008,
|
| 11 |
+
"max_position_embeddings": 2048,
|
| 12 |
+
"model_type": "llama",
|
| 13 |
+
"num_attention_heads": 32,
|
| 14 |
+
"num_hidden_layers": 32,
|
| 15 |
+
"pad_token_id": 0,
|
| 16 |
+
"rms_norm_eps": 1e-06,
|
| 17 |
+
"tie_word_embeddings": false,
|
| 18 |
+
"torch_dtype": "float32",
|
| 19 |
+
"transformers_version": "4.29.2",
|
| 20 |
+
"use_cache": true,
|
| 21 |
+
"vocab_size": 51200
|
| 22 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 50256,
|
| 4 |
+
"eos_token_id": 50256,
|
| 5 |
+
"transformers_version": "4.29.2"
|
| 6 |
+
}
|
pytorch_model-00001-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:28a387422c7c4a3b974030edeb0ddbf267d6c38da955dae8eedaaa3f8a5f40e9
|
| 3 |
+
size 9945097125
|
pytorch_model-00002-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44dad4590c8e3278a286441872569ad1451afc10f816288ac5c8ee68cdbc27b4
|
| 3 |
+
size 9961910848
|
pytorch_model-00003-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ea2ac153a38f30aa2bae240ec91dcbebbaf2dc1889738fb05fcd19f6bc316ce
|
| 3 |
+
size 7675918907
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 27582816256
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 328 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
| 329 |
+
}
|
| 330 |
+
}
|
tokenization_codegen25.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, salesforce.com, inc.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 4 |
+
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
|
| 5 |
+
"""Tokenization classes for CodeGen2.5."""
|
| 6 |
+
|
| 7 |
+
from typing import List, Optional
|
| 8 |
+
|
| 9 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
import tiktoken
|
| 14 |
+
except ModuleNotFoundError as e:
|
| 15 |
+
raise ModuleNotFoundError("CodeGen2.5 requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logger = logging.get_logger(__name__)
|
| 19 |
+
|
| 20 |
+
MAX_MODEL_INPUT_SIZES = {
|
| 21 |
+
"Salesforce/codegen25-7b-multi": 2048,
|
| 22 |
+
"Salesforce/codegen25-7b-mono": 2048,
|
| 23 |
+
"Salesforce/codegen25-7b-instruct": 2048,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
| 28 |
+
if not add_special:
|
| 29 |
+
return tiktoken.get_encoding(base)
|
| 30 |
+
|
| 31 |
+
def include_whitespace(n_min=2, n_max=20):
|
| 32 |
+
whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
|
| 33 |
+
return whitespaces
|
| 34 |
+
|
| 35 |
+
def include_tabs(n_min=2, n_max=20):
|
| 36 |
+
tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
|
| 37 |
+
return tabs
|
| 38 |
+
|
| 39 |
+
def include_fim_tokens():
|
| 40 |
+
fim_tokens = [
|
| 41 |
+
"<fim_prefix>",
|
| 42 |
+
"<fim_middle>",
|
| 43 |
+
"<fim_suffix>",
|
| 44 |
+
"<fim_pad>",
|
| 45 |
+
"<filename>",
|
| 46 |
+
"<gh_stars>",
|
| 47 |
+
"<issue_start>",
|
| 48 |
+
"<issue_comment>",
|
| 49 |
+
"<issue_closed>",
|
| 50 |
+
"<jupyter_start>",
|
| 51 |
+
"<jupyter_text>",
|
| 52 |
+
"<jupyter_code>",
|
| 53 |
+
"<jupyter_output>",
|
| 54 |
+
"<empty_output>",
|
| 55 |
+
"<commit_before>",
|
| 56 |
+
"<commit_msg>",
|
| 57 |
+
"<commit_after>",
|
| 58 |
+
"<reponame>"
|
| 59 |
+
]
|
| 60 |
+
return fim_tokens
|
| 61 |
+
|
| 62 |
+
def include_codegen2_tokens():
|
| 63 |
+
tokens = []
|
| 64 |
+
tokens += [f"<dummy_{i}>" for i in range(4)]
|
| 65 |
+
tokens.append("<sep>") # 50317
|
| 66 |
+
tokens.append("<eom>") # 50318
|
| 67 |
+
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
|
| 68 |
+
return tokens
|
| 69 |
+
|
| 70 |
+
add_whitespaces = include_whitespace(n_min=2, n_max=32)
|
| 71 |
+
add_tabs = include_tabs(n_min=2, n_max=10)
|
| 72 |
+
fim_tokens = include_fim_tokens()
|
| 73 |
+
codegen2_tokens = include_codegen2_tokens()
|
| 74 |
+
|
| 75 |
+
tokenizer = tiktoken.get_encoding(base)
|
| 76 |
+
|
| 77 |
+
idx = tokenizer.n_vocab
|
| 78 |
+
|
| 79 |
+
bpe_ranks = tokenizer._mergeable_ranks
|
| 80 |
+
|
| 81 |
+
for wsp in add_whitespaces:
|
| 82 |
+
bpe_ranks[bytes(wsp, 'ascii')] = idx
|
| 83 |
+
idx += 1
|
| 84 |
+
for t in add_tabs:
|
| 85 |
+
bpe_ranks[bytes(t, 'ascii')] = idx
|
| 86 |
+
idx += 1
|
| 87 |
+
|
| 88 |
+
special_tokens = dict()
|
| 89 |
+
|
| 90 |
+
for sp in fim_tokens:
|
| 91 |
+
special_tokens[sp] = idx
|
| 92 |
+
idx += 1
|
| 93 |
+
for sp in codegen2_tokens:
|
| 94 |
+
special_tokens[sp] = idx
|
| 95 |
+
idx += 1
|
| 96 |
+
|
| 97 |
+
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
|
| 98 |
+
special_tokens[pad_token] = idx
|
| 99 |
+
idx += 1
|
| 100 |
+
# In production, load the arguments directly instead of accessing private attributes
|
| 101 |
+
# See openai_public.py for examples of arguments for specific encodings
|
| 102 |
+
enc = tiktoken.Encoding(
|
| 103 |
+
# If you're changing the set of special tokens, make sure to use a different name
|
| 104 |
+
# It should be clear from the name what behaviour to expect.
|
| 105 |
+
name=base.replace("base", "im"),
|
| 106 |
+
pat_str=tokenizer._pat_str,
|
| 107 |
+
mergeable_ranks=bpe_ranks,
|
| 108 |
+
special_tokens={
|
| 109 |
+
**tokenizer._special_tokens,
|
| 110 |
+
**special_tokens
|
| 111 |
+
}
|
| 112 |
+
)
|
| 113 |
+
return enc
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class CodeGen25Tokenizer(PreTrainedTokenizer):
|
| 117 |
+
"""
|
| 118 |
+
Construct a CodeGen2.5 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 119 |
+
Args:
|
| 120 |
+
vocab_file (`str`):
|
| 121 |
+
Path to the vocabulary file.
|
| 122 |
+
"""
|
| 123 |
+
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
|
| 124 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 125 |
+
|
| 126 |
+
def __init__(
|
| 127 |
+
self,
|
| 128 |
+
pad_token=None,
|
| 129 |
+
eos_token="<|endoftext|>",
|
| 130 |
+
add_eos_token=False,
|
| 131 |
+
add_special_tokens=True,
|
| 132 |
+
**kwargs,
|
| 133 |
+
):
|
| 134 |
+
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
| 135 |
+
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
| 136 |
+
super().__init__(
|
| 137 |
+
pad_token=pad_token_added,
|
| 138 |
+
eos_token=eos_token_added,
|
| 139 |
+
add_eos_token=add_eos_token,
|
| 140 |
+
add_special_tokens=add_special_tokens,
|
| 141 |
+
**kwargs,
|
| 142 |
+
)
|
| 143 |
+
self.add_eos_token = add_eos_token
|
| 144 |
+
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def vocab_size(self):
|
| 148 |
+
"""Returns vocab size"""
|
| 149 |
+
return self.encoder.n_vocab
|
| 150 |
+
|
| 151 |
+
def get_vocab(self):
|
| 152 |
+
"""Returns vocab as a dict"""
|
| 153 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
| 154 |
+
return vocab
|
| 155 |
+
|
| 156 |
+
def _tokenize(self, text, **kwargs):
|
| 157 |
+
"""Returns a tokenized string."""
|
| 158 |
+
return self.encoder.encode(text, allowed_special="all")
|
| 159 |
+
|
| 160 |
+
def _convert_token_to_id(self, token):
|
| 161 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 162 |
+
if isinstance(token, str):
|
| 163 |
+
return self.encoder.encode_single_token(token)
|
| 164 |
+
else:
|
| 165 |
+
return token
|
| 166 |
+
|
| 167 |
+
def _convert_id_to_token(self, index):
|
| 168 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 169 |
+
return self.encoder.decode_single_token_bytes(index).decode("utf-8")
|
| 170 |
+
|
| 171 |
+
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs):
|
| 172 |
+
if skip_special_tokens:
|
| 173 |
+
token_ids = [t for t in token_ids if t not in self.all_special_ids]
|
| 174 |
+
return self.encoder.decode(token_ids)
|
| 175 |
+
|
| 176 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
| 177 |
+
"""Build model inputs from a sequence by appending eos_token_id."""
|
| 178 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 179 |
+
|
| 180 |
+
output = token_ids_0 + eos_token_id
|
| 181 |
+
|
| 182 |
+
if token_ids_1 is not None:
|
| 183 |
+
output = output + token_ids_1 + eos_token_id
|
| 184 |
+
|
| 185 |
+
return output
|
| 186 |
+
|
| 187 |
+
def get_special_tokens_mask(
|
| 188 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
| 189 |
+
already_has_special_tokens: bool = False
|
| 190 |
+
) -> List[int]:
|
| 191 |
+
"""
|
| 192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 194 |
+
Args:
|
| 195 |
+
token_ids_0 (`List[int]`):
|
| 196 |
+
List of IDs.
|
| 197 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 198 |
+
Optional second list of IDs for sequence pairs.
|
| 199 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 200 |
+
Whether the token list is already formatted with special tokens for the model.
|
| 201 |
+
Returns:
|
| 202 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 203 |
+
"""
|
| 204 |
+
if already_has_special_tokens:
|
| 205 |
+
return super().get_special_tokens_mask(
|
| 206 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 210 |
+
|
| 211 |
+
if token_ids_1 is None:
|
| 212 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
| 213 |
+
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
| 214 |
+
|
| 215 |
+
def create_token_type_ids_from_sequences(
|
| 216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 217 |
+
) -> List[int]:
|
| 218 |
+
"""
|
| 219 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 220 |
+
sequence pair mask has the following format:
|
| 221 |
+
```
|
| 222 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 223 |
+
| first sequence | second sequence |
|
| 224 |
+
```
|
| 225 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 226 |
+
Args:
|
| 227 |
+
token_ids_0 (`List[int]`):
|
| 228 |
+
List of ids.
|
| 229 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 230 |
+
Optional second list of IDs for sequence pairs.
|
| 231 |
+
Returns:
|
| 232 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
| 233 |
+
"""
|
| 234 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 235 |
+
|
| 236 |
+
output = [0] * len(token_ids_0 + eos_token_id)
|
| 237 |
+
|
| 238 |
+
if token_ids_1 is not None:
|
| 239 |
+
output += [1] * len(token_ids_1 + eos_token_id)
|
| 240 |
+
|
| 241 |
+
return output
|
| 242 |
+
|
| 243 |
+
# has no vocab file
|
| 244 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
| 245 |
+
return ()
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_eos_token": false,
|
| 3 |
+
"add_special_tokens": true,
|
| 4 |
+
"clean_up_tokenization_spaces": true,
|
| 5 |
+
"eos_token": "<|endoftext|>",
|
| 6 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 7 |
+
"pad_token": null,
|
| 8 |
+
"tokenizer_class": "CodeGen25Tokenizer",
|
| 9 |
+
"auto_map": {
|
| 10 |
+
"AutoTokenizer": ["tokenization_codegen25.CodeGen25Tokenizer", null]
|
| 11 |
+
}
|
| 12 |
+
}
|