nielsr HF Staff commited on
Commit
a095652
·
verified ·
1 Parent(s): 5c28181

Add paper abstract to model card

Browse files

This pull request improves the model card by adding the abstract of the associated paper, "[APIGen-MT: Agentic Pipeline for Multi-Turn Data Generation via Simulated Agent-Human Interplay](https://huggingface.co/papers/2504.03601)". This addition provides crucial context and a concise summary of the model's development and performance directly within the README, enhancing its utility for researchers and users.

Files changed (1) hide show
  1. README.md +21 -19
README.md CHANGED
@@ -1,10 +1,11 @@
1
  ---
2
- license: cc-by-nc-4.0
3
  datasets:
4
  - Salesforce/APIGen-MT-5k
5
  - Salesforce/xlam-function-calling-60k
6
  language:
7
  - en
 
 
8
  pipeline_tag: text-generation
9
  tags:
10
  - function-calling
@@ -14,7 +15,6 @@ tags:
14
  - qwen
15
  - pytorch
16
  - LLaMA-factory
17
- library_name: transformers
18
  ---
19
 
20
  <p align="center">
@@ -48,6 +48,9 @@ We've also refined the **chat template** and **vLLM integration**, making it eas
48
  <small><i>Comparative performance of larger xLAM-2-fc-r models (8B-70B, trained with APIGen-MT data) against state-of-the-art baselines on function-calling (BFCL v3, as of date 04/02/2025) and agentic (τ-bench) capabilities.</i></small>
49
  </p>
50
 
 
 
 
51
 
52
  ## Table of Contents
53
  - [Model Series](#model-series)
@@ -175,7 +178,7 @@ output = llm.create_chat_completion(
175
  "title": "Age",
176
  "type": "integer"
177
  }
178
- },
179
  "required": [ "name", "age" ]
180
  }
181
  }
@@ -239,39 +242,38 @@ Additionally, please check our other amazing works regarding xLAM series and con
239
 
240
  ```bibtex
241
  @article{zhang2025actionstudio,
242
- title={ActionStudio: A Lightweight Framework for Data and Training of Action Models},
243
- author={Zhang, Jianguo and Hoang, Thai and Zhu, Ming and Liu, Zuxin and Wang, Shiyu and Awalgaonkar, Tulika and Prabhakar, Akshara and Chen, Haolin and Yao, Weiran and Liu, Zhiwei and others},
244
- journal={arXiv preprint arXiv:2503.22673},
245
  year={2025}
246
  }
247
  ```
248
 
249
  ```bibtex
250
  @article{zhang2024xlam,
251
- title={xLAM: A Family of Large Action Models to Empower AI Agent Systems},
252
- author={Zhang, Jianguo and Lan, Tian and Zhu, Ming and Liu, Zuxin and Hoang, Thai and Kokane, Shirley and Yao, Weiran and Tan, Juntao and Prabhakar, Akshara and Chen, Haolin and others},
253
- journal={arXiv preprint arXiv:2409.03215},
254
  year={2024}
255
  }
256
  ```
257
 
258
  ```bibtex
259
  @article{liu2024apigen,
260
- title={Apigen: Automated pipeline for generating verifiable and diverse function-calling datasets},
261
- author={Liu, Zuxin and Hoang, Thai and Zhang, Jianguo and Zhu, Ming and Lan, Tian and Tan, Juntao and Yao, Weiran and Liu, Zhiwei and Feng, Yihao and RN, Rithesh and others},
262
- journal={Advances in Neural Information Processing Systems},
263
- volume={37},
264
- pages={54463--54482},
265
  year={2024}
266
  }
267
  ```
268
 
269
  ```bibtex
270
  @article{zhang2024agentohana,
271
- title={AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning},
272
- author={Zhang, Jianguo and Lan, Tian and Murthy, Rithesh and Liu, Zhiwei and Yao, Weiran and Tan, Juntao and Hoang, Thai and Yang, Liangwei and Feng, Yihao and Liu, Zuxin and others},
273
- journal={arXiv preprint arXiv:2402.15506},
274
  year={2024}
275
  }
276
- ```
277
-
 
1
  ---
 
2
  datasets:
3
  - Salesforce/APIGen-MT-5k
4
  - Salesforce/xlam-function-calling-60k
5
  language:
6
  - en
7
+ library_name: transformers
8
+ license: cc-by-nc-4.0
9
  pipeline_tag: text-generation
10
  tags:
11
  - function-calling
 
15
  - qwen
16
  - pytorch
17
  - LLaMA-factory
 
18
  ---
19
 
20
  <p align="center">
 
48
  <small><i>Comparative performance of larger xLAM-2-fc-r models (8B-70B, trained with APIGen-MT data) against state-of-the-art baselines on function-calling (BFCL v3, as of date 04/02/2025) and agentic (τ-bench) capabilities.</i></small>
49
  </p>
50
 
51
+ ## Paper Abstract
52
+
53
+ Training effective AI agents for multi-turn interactions requires high-quality data that captures realistic human-agent dynamics, yet such data is scarce and expensive to collect manually. We introduce APIGen-MT, a two-phase framework that generates verifiable and diverse multi-turn agent data. In the first phase, our agentic pipeline produces detailed task blueprints with ground-truth actions, leveraging a committee of LLM reviewers and iterative feedback loops. These blueprints are then transformed into complete interaction trajectories through simulated human-agent interplay. We train a family of models -- the xLAM-2-fc-r series with sizes ranging from 1B to 70B parameters. Our models outperform frontier models such as GPT-4o and Claude 3.5 on τ-bench and BFCL benchmarks, with the smaller models surpassing their larger counterparts, particularly in multi-turn settings, while maintaining superior consistency across multiple trials. Comprehensive experiments demonstrate that our verified blueprint-to-details approach yields high-quality training data, enabling the development of more reliable, efficient, and capable agents. We open-source 5K synthetic data trajectories and the trained xLAM-2-fc-r models to advance research in AI agents.
54
 
55
  ## Table of Contents
56
  - [Model Series](#model-series)
 
178
  "title": "Age",
179
  "type": "integer"
180
  }
181
+ },\
182
  "required": [ "name", "age" ]
183
  }
184
  }
 
242
 
243
  ```bibtex
244
  @article{zhang2025actionstudio,
245
+ title={ActionStudio: A Lightweight Framework for Data and Training of Action Models},\
246
+ author={Zhang, Jianguo and Hoang, Thai and Zhu, Ming and Liu, Zuxin and Wang, Shiyu and Awalgaonkar, Tulika and Prabhakar, Akshara and Chen, Haolin and Yao, Weiran and Liu, Zhiwei and others},\
247
+ journal={arXiv preprint arXiv:2503.22673},\
248
  year={2025}
249
  }
250
  ```
251
 
252
  ```bibtex
253
  @article{zhang2024xlam,
254
+ title={xLAM: A Family of Large Action Models to Empower AI Agent Systems},\
255
+ author={Zhang, Jianguo and Lan, Tian and Zhu, Ming and Liu, Zuxin and Hoang, Thai and Kokane, Shirley and Yao, Weiran and Tan, Juntao and Prabhakar, Akshara and Chen, Haolin and others},\
256
+ journal={arXiv preprint arXiv:2409.03215},\
257
  year={2024}
258
  }
259
  ```
260
 
261
  ```bibtex
262
  @article{liu2024apigen,
263
+ title={Apigen: Automated pipeline for generating verifiable and diverse function-calling datasets},\
264
+ author={Liu, Zuxin and Hoang, Thai and Zhang, Jianguo and Zhu, Ming and Lan, Tian and Tan, Juntao and Yao, Weiran and Liu, Zhiwei and Feng, Yihao and RN, Rithesh and others},\
265
+ journal={Advances in Neural Information Processing Systems},\
266
+ volume={37},\
267
+ pages={54463--54482},\
268
  year={2024}
269
  }
270
  ```
271
 
272
  ```bibtex
273
  @article{zhang2024agentohana,
274
+ title={AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning},\
275
+ author={Zhang, Jianguo and Lan, Tian and Murthy, Rithesh and Liu, Zhiwei and Yao, Weiran and Tan, Juntao and Hoang, Thai and Yang, Liangwei and Feng, Yihao and Liu, Zuxin and others},\
276
+ journal={arXiv preprint arXiv:2402.15506},\
277
  year={2024}
278
  }
279
+ ```