Upload multi_turn_xlam.ipynb
Browse files- example/multi_turn_xlam.ipynb +459 -0
example/multi_turn_xlam.ipynb
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "ce4a9ccf-4bd6-43fb-a24d-b6a7da401a96",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"## Load xLAM model"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": null,
|
| 14 |
+
"id": "b1351d81-4502-4b65-b88a-464acd0e80f8",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"import torch \n",
|
| 19 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
| 20 |
+
"torch.random.manual_seed(0) \n",
|
| 21 |
+
"\n",
|
| 22 |
+
"model_name = \"Salesforce/xLAM-7b-r\"\n",
|
| 23 |
+
"model = AutoModelForCausalLM.from_pretrained(model_name, device_map=\"auto\", torch_dtype=\"auto\", trust_remote_code=True)\n",
|
| 24 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name) "
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "markdown",
|
| 29 |
+
"id": "2cdd5bae-da43-4713-9956-360f1f3a9721",
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"source": [
|
| 32 |
+
"## Build the prompt"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": 1,
|
| 38 |
+
"id": "e138e9f6-0543-427c-bce6-b4f14765a040",
|
| 39 |
+
"metadata": {
|
| 40 |
+
"tags": []
|
| 41 |
+
},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"import json\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"# Please use our provided instruction prompt for best performance\n",
|
| 47 |
+
"task_instruction = \"\"\"\n",
|
| 48 |
+
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\"\"\".strip()\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"format_instruction = \"\"\"\n",
|
| 51 |
+
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
|
| 52 |
+
"tool_calls an empty list \"[]\".\n",
|
| 53 |
+
"```\n",
|
| 54 |
+
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
|
| 55 |
+
"```\n",
|
| 56 |
+
"\"\"\".strip()\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"get_weather_api = {\n",
|
| 59 |
+
" \"name\": \"get_weather\",\n",
|
| 60 |
+
" \"description\": \"Get the current weather for a location\",\n",
|
| 61 |
+
" \"parameters\": {\n",
|
| 62 |
+
" \"type\": \"object\",\n",
|
| 63 |
+
" \"properties\": {\n",
|
| 64 |
+
" \"location\": {\n",
|
| 65 |
+
" \"type\": \"string\",\n",
|
| 66 |
+
" \"description\": \"The city and state, e.g. San Francisco, New York\"\n",
|
| 67 |
+
" },\n",
|
| 68 |
+
" \"unit\": {\n",
|
| 69 |
+
" \"type\": \"string\",\n",
|
| 70 |
+
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
|
| 71 |
+
" \"description\": \"The unit of temperature to return\"\n",
|
| 72 |
+
" }\n",
|
| 73 |
+
" },\n",
|
| 74 |
+
" \"required\": [\"location\"]\n",
|
| 75 |
+
" }\n",
|
| 76 |
+
"}\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"search_api = {\n",
|
| 79 |
+
" \"name\": \"search\",\n",
|
| 80 |
+
" \"description\": \"Search for information on the internet\",\n",
|
| 81 |
+
" \"parameters\": {\n",
|
| 82 |
+
" \"type\": \"object\",\n",
|
| 83 |
+
" \"properties\": {\n",
|
| 84 |
+
" \"query\": {\n",
|
| 85 |
+
" \"type\": \"string\",\n",
|
| 86 |
+
" \"description\": \"The search query, e.g. 'latest news on AI'\"\n",
|
| 87 |
+
" }\n",
|
| 88 |
+
" },\n",
|
| 89 |
+
" \"required\": [\"query\"]\n",
|
| 90 |
+
" }\n",
|
| 91 |
+
"}\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"openai_format_tools = [get_weather_api, search_api]\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"# Define the input query and available tools\n",
|
| 96 |
+
"query = \"What's the weather like in New York in fahrenheit?\"\n",
|
| 97 |
+
"\n",
|
| 98 |
+
"# Helper function to convert openai format tools to our more concise xLAM format\n",
|
| 99 |
+
"def convert_to_xlam_tool(tools):\n",
|
| 100 |
+
" ''''''\n",
|
| 101 |
+
" if isinstance(tools, dict):\n",
|
| 102 |
+
" return {\n",
|
| 103 |
+
" \"name\": tools[\"name\"],\n",
|
| 104 |
+
" \"description\": tools[\"description\"],\n",
|
| 105 |
+
" \"parameters\": {k: v for k, v in tools[\"parameters\"].get(\"properties\", {}).items()}\n",
|
| 106 |
+
" }\n",
|
| 107 |
+
" elif isinstance(tools, list):\n",
|
| 108 |
+
" return [convert_to_xlam_tool(tool) for tool in tools]\n",
|
| 109 |
+
" else:\n",
|
| 110 |
+
" return tools\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"def build_conversation_history_prompt(conversation_history: str):\n",
|
| 113 |
+
" parsed_history = []\n",
|
| 114 |
+
" for step_data in conversation_history:\n",
|
| 115 |
+
" parsed_history.append({\n",
|
| 116 |
+
" \"step_id\": step_data[\"step_id\"],\n",
|
| 117 |
+
" \"thought\": step_data[\"thought\"],\n",
|
| 118 |
+
" \"tool_calls\": step_data[\"tool_calls\"],\n",
|
| 119 |
+
" \"next_observation\": step_data[\"next_observation\"],\n",
|
| 120 |
+
" \"user_input\": step_data['user_input']\n",
|
| 121 |
+
" })\n",
|
| 122 |
+
" \n",
|
| 123 |
+
" history_string = json.dumps(parsed_history)\n",
|
| 124 |
+
" return f\"\\n[BEGIN OF HISTORY STEPS]\\n{history_string}\\n[END OF HISTORY STEPS]\\n\"\n",
|
| 125 |
+
" \n",
|
| 126 |
+
" \n",
|
| 127 |
+
"# Helper function to build the input prompt for our model\n",
|
| 128 |
+
"def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):\n",
|
| 129 |
+
" prompt = f\"[BEGIN OF TASK INSTRUCTION]\\n{task_instruction}\\n[END OF TASK INSTRUCTION]\\n\\n\"\n",
|
| 130 |
+
" prompt += f\"[BEGIN OF AVAILABLE TOOLS]\\n{json.dumps(xlam_format_tools)}\\n[END OF AVAILABLE TOOLS]\\n\\n\"\n",
|
| 131 |
+
" prompt += f\"[BEGIN OF FORMAT INSTRUCTION]\\n{format_instruction}\\n[END OF FORMAT INSTRUCTION]\\n\\n\"\n",
|
| 132 |
+
" prompt += f\"[BEGIN OF QUERY]\\n{query}\\n[END OF QUERY]\\n\\n\"\n",
|
| 133 |
+
" \n",
|
| 134 |
+
" if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)\n",
|
| 135 |
+
" return prompt\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"\n",
|
| 138 |
+
" \n",
|
| 139 |
+
"# Build the input and start the inference\n",
|
| 140 |
+
"xlam_format_tools = convert_to_xlam_tool(openai_format_tools)\n",
|
| 141 |
+
"\n",
|
| 142 |
+
"conversation_history = []\n",
|
| 143 |
+
"content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"messages=[\n",
|
| 146 |
+
" { 'role': 'user', 'content': content}\n",
|
| 147 |
+
"]\n"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": 2,
|
| 153 |
+
"id": "ff7bccd5-fa04-4fbe-92b3-13f58914da4d",
|
| 154 |
+
"metadata": {
|
| 155 |
+
"tags": []
|
| 156 |
+
},
|
| 157 |
+
"outputs": [
|
| 158 |
+
{
|
| 159 |
+
"name": "stdout",
|
| 160 |
+
"output_type": "stream",
|
| 161 |
+
"text": [
|
| 162 |
+
"[BEGIN OF TASK INSTRUCTION]\n",
|
| 163 |
+
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
|
| 164 |
+
"[END OF TASK INSTRUCTION]\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"[BEGIN OF AVAILABLE TOOLS]\n",
|
| 167 |
+
"[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
|
| 168 |
+
"[END OF AVAILABLE TOOLS]\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"[BEGIN OF FORMAT INSTRUCTION]\n",
|
| 171 |
+
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
|
| 172 |
+
"tool_calls an empty list \"[]\".\n",
|
| 173 |
+
"```\n",
|
| 174 |
+
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
|
| 175 |
+
"```\n",
|
| 176 |
+
"[END OF FORMAT INSTRUCTION]\n",
|
| 177 |
+
"\n",
|
| 178 |
+
"[BEGIN OF QUERY]\n",
|
| 179 |
+
"What's the weather like in New York in fahrenheit?\n",
|
| 180 |
+
"[END OF QUERY]\n",
|
| 181 |
+
"\n",
|
| 182 |
+
"\n"
|
| 183 |
+
]
|
| 184 |
+
}
|
| 185 |
+
],
|
| 186 |
+
"source": [
|
| 187 |
+
"print(content)"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "markdown",
|
| 192 |
+
"id": "a5fb0006-9f5d-4d79-a8cd-819bad627441",
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"source": [
|
| 195 |
+
"## Get the model output (agent_action)"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": null,
|
| 201 |
+
"id": "cbe56588-c786-4913-9062-373a22a92e08",
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [],
|
| 204 |
+
"source": [
|
| 205 |
+
"inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"# tokenizer.eos_token_id is the id of <|EOT|> token\n",
|
| 208 |
+
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
|
| 209 |
+
"agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "markdown",
|
| 214 |
+
"id": "b20ed2ae-86f6-489b-ad54-fe7ea911667b",
|
| 215 |
+
"metadata": {},
|
| 216 |
+
"source": [
|
| 217 |
+
"For demo purpose, we use an example agent_action"
|
| 218 |
+
]
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"cell_type": "code",
|
| 222 |
+
"execution_count": 3,
|
| 223 |
+
"id": "ab20c084-44fa-403d-92a5-1b8ced72e9be",
|
| 224 |
+
"metadata": {
|
| 225 |
+
"tags": []
|
| 226 |
+
},
|
| 227 |
+
"outputs": [],
|
| 228 |
+
"source": [
|
| 229 |
+
"agent_action = \"\"\"{\"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}]}\n",
|
| 230 |
+
"\"\"\".strip()"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "markdown",
|
| 235 |
+
"id": "1cd4d8e4-ee6b-499e-b75f-a48df7848a60",
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"source": [
|
| 238 |
+
"### Add follow-up question"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"cell_type": "code",
|
| 243 |
+
"execution_count": 4,
|
| 244 |
+
"id": "825649ba-2691-43a2-b3d8-7baf8b66d46e",
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [],
|
| 247 |
+
"source": [
|
| 248 |
+
"def parse_agent_action(agent_action: str):\n",
|
| 249 |
+
" \"\"\"\n",
|
| 250 |
+
" Given an agent's action, parse it to add to conversation history\n",
|
| 251 |
+
" \"\"\"\n",
|
| 252 |
+
" try: parsed_agent_action_json = json.loads(agent_action)\n",
|
| 253 |
+
" except: return \"\", []\n",
|
| 254 |
+
" \n",
|
| 255 |
+
" if \"thought\" not in parsed_agent_action_json.keys(): thought = \"\"\n",
|
| 256 |
+
" else: thought = parsed_agent_action_json[\"thought\"]\n",
|
| 257 |
+
" \n",
|
| 258 |
+
" if \"tool_calls\" not in parsed_agent_action_json.keys(): tool_calls = []\n",
|
| 259 |
+
" else: tool_calls = parsed_agent_action_json[\"tool_calls\"]\n",
|
| 260 |
+
" \n",
|
| 261 |
+
" return thought, tool_calls\n",
|
| 262 |
+
"\n",
|
| 263 |
+
"def update_conversation_history(conversation_history: list, agent_action: str, environment_response: str, user_input: str):\n",
|
| 264 |
+
" \"\"\"\n",
|
| 265 |
+
" Update the conversation history list based on the new agent_action, environment_response, and/or user_input\n",
|
| 266 |
+
" \"\"\"\n",
|
| 267 |
+
" thought, tool_calls = parse_agent_action(agent_action)\n",
|
| 268 |
+
" new_step_data = {\n",
|
| 269 |
+
" \"step_id\": len(conversation_history) + 1,\n",
|
| 270 |
+
" \"thought\": thought,\n",
|
| 271 |
+
" \"tool_calls\": tool_calls,\n",
|
| 272 |
+
" \"next_observation\": environment_response,\n",
|
| 273 |
+
" \"user_input\": user_input,\n",
|
| 274 |
+
" }\n",
|
| 275 |
+
" \n",
|
| 276 |
+
" conversation_history.append(new_step_data)\n",
|
| 277 |
+
"\n",
|
| 278 |
+
"def get_environment_response(agent_action: str):\n",
|
| 279 |
+
" \"\"\"\n",
|
| 280 |
+
" Get the environment response for the agent_action\n",
|
| 281 |
+
" \"\"\"\n",
|
| 282 |
+
" # TODO: add custom implementation here\n",
|
| 283 |
+
" error_message, response_message = \"\", \"Sunny, 81 degrees\"\n",
|
| 284 |
+
" return {\"error\": error_message, \"response\": response_message}\n",
|
| 285 |
+
"\n"
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "markdown",
|
| 290 |
+
"id": "051e6aff-c21b-4dcb-9eb8-c34154d90c39",
|
| 291 |
+
"metadata": {},
|
| 292 |
+
"source": [
|
| 293 |
+
"1. **Get the next state after agent's response:**\n",
|
| 294 |
+
" The next 2 lines are examples of getting environment response and user_input.\n",
|
| 295 |
+
" It is depended on particular usage, we can have either one or both of those."
|
| 296 |
+
]
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"cell_type": "code",
|
| 300 |
+
"execution_count": 5,
|
| 301 |
+
"id": "649a8e9d-9757-408c-9214-0590556c2db4",
|
| 302 |
+
"metadata": {
|
| 303 |
+
"tags": []
|
| 304 |
+
},
|
| 305 |
+
"outputs": [],
|
| 306 |
+
"source": [
|
| 307 |
+
"environment_response = get_environment_response(agent_action)\n",
|
| 308 |
+
"user_input = \"Now, search on the Internet for cute puppies\""
|
| 309 |
+
]
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"cell_type": "markdown",
|
| 313 |
+
"id": "9c9c9418-1c54-4381-81d1-7f3834037739",
|
| 314 |
+
"metadata": {},
|
| 315 |
+
"source": [
|
| 316 |
+
"2. After we got environment_response and (or) user_input, we want to add to our conversation history"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": 6,
|
| 322 |
+
"id": "bcfe89f3-8237-41bf-b92c-7c7568366042",
|
| 323 |
+
"metadata": {
|
| 324 |
+
"tags": []
|
| 325 |
+
},
|
| 326 |
+
"outputs": [
|
| 327 |
+
{
|
| 328 |
+
"data": {
|
| 329 |
+
"text/plain": [
|
| 330 |
+
"[{'step_id': 1,\n",
|
| 331 |
+
" 'thought': '',\n",
|
| 332 |
+
" 'tool_calls': [{'name': 'get_weather',\n",
|
| 333 |
+
" 'arguments': {'location': 'New York'}}],\n",
|
| 334 |
+
" 'next_observation': {'error': '', 'response': 'Sunny, 81 degrees'},\n",
|
| 335 |
+
" 'user_input': 'Now, search on the Internet for cute puppies'}]"
|
| 336 |
+
]
|
| 337 |
+
},
|
| 338 |
+
"execution_count": 6,
|
| 339 |
+
"metadata": {},
|
| 340 |
+
"output_type": "execute_result"
|
| 341 |
+
}
|
| 342 |
+
],
|
| 343 |
+
"source": [
|
| 344 |
+
"update_conversation_history(conversation_history, agent_action, environment_response, user_input)\n",
|
| 345 |
+
"conversation_history"
|
| 346 |
+
]
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"cell_type": "markdown",
|
| 350 |
+
"id": "23ba97c6-2356-49e8-a07b-0e664b7f505c",
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"source": [
|
| 353 |
+
"3. We now can build the prompt with the updated history, and prepare the inputs for the LLM"
|
| 354 |
+
]
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"cell_type": "code",
|
| 358 |
+
"execution_count": 7,
|
| 359 |
+
"id": "ed204b3a-3be5-431b-b355-facaf31309d2",
|
| 360 |
+
"metadata": {
|
| 361 |
+
"tags": []
|
| 362 |
+
},
|
| 363 |
+
"outputs": [],
|
| 364 |
+
"source": [
|
| 365 |
+
"content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
|
| 366 |
+
"messages=[\n",
|
| 367 |
+
" { 'role': 'user', 'content': content}\n",
|
| 368 |
+
"]\n"
|
| 369 |
+
]
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"cell_type": "code",
|
| 373 |
+
"execution_count": 8,
|
| 374 |
+
"id": "8af843aa-6a47-4938-a455-567ea0cccce3",
|
| 375 |
+
"metadata": {
|
| 376 |
+
"tags": []
|
| 377 |
+
},
|
| 378 |
+
"outputs": [
|
| 379 |
+
{
|
| 380 |
+
"name": "stdout",
|
| 381 |
+
"output_type": "stream",
|
| 382 |
+
"text": [
|
| 383 |
+
"[BEGIN OF TASK INSTRUCTION]\n",
|
| 384 |
+
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
|
| 385 |
+
"[END OF TASK INSTRUCTION]\n",
|
| 386 |
+
"\n",
|
| 387 |
+
"[BEGIN OF AVAILABLE TOOLS]\n",
|
| 388 |
+
"[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
|
| 389 |
+
"[END OF AVAILABLE TOOLS]\n",
|
| 390 |
+
"\n",
|
| 391 |
+
"[BEGIN OF FORMAT INSTRUCTION]\n",
|
| 392 |
+
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
|
| 393 |
+
"tool_calls an empty list \"[]\".\n",
|
| 394 |
+
"```\n",
|
| 395 |
+
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
|
| 396 |
+
"```\n",
|
| 397 |
+
"[END OF FORMAT INSTRUCTION]\n",
|
| 398 |
+
"\n",
|
| 399 |
+
"[BEGIN OF QUERY]\n",
|
| 400 |
+
"What's the weather like in New York in fahrenheit?\n",
|
| 401 |
+
"[END OF QUERY]\n",
|
| 402 |
+
"\n",
|
| 403 |
+
"\n",
|
| 404 |
+
"[BEGIN OF HISTORY STEPS]\n",
|
| 405 |
+
"[{\"step_id\": 1, \"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}], \"next_observation\": {\"error\": \"\", \"response\": \"Sunny, 81 degrees\"}, \"user_input\": \"Now, search on the Internet for cute puppies\"}]\n",
|
| 406 |
+
"[END OF HISTORY STEPS]\n",
|
| 407 |
+
"\n"
|
| 408 |
+
]
|
| 409 |
+
}
|
| 410 |
+
],
|
| 411 |
+
"source": [
|
| 412 |
+
"print(content)"
|
| 413 |
+
]
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"cell_type": "markdown",
|
| 417 |
+
"id": "71f76a10-a152-49d7-aa6f-3060cc49b935",
|
| 418 |
+
"metadata": {},
|
| 419 |
+
"source": [
|
| 420 |
+
"## Get the model output for follow-up question"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"cell_type": "code",
|
| 425 |
+
"execution_count": null,
|
| 426 |
+
"id": "30af06fd-4aa7-4550-af39-3a77b5951882",
|
| 427 |
+
"metadata": {},
|
| 428 |
+
"outputs": [],
|
| 429 |
+
"source": [
|
| 430 |
+
"inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
|
| 431 |
+
"# 5. Generate the outputs & decode\n",
|
| 432 |
+
"# tokenizer.eos_token_id is the id of <|EOT|> token\n",
|
| 433 |
+
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
|
| 434 |
+
"agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
|
| 435 |
+
]
|
| 436 |
+
}
|
| 437 |
+
],
|
| 438 |
+
"metadata": {
|
| 439 |
+
"kernelspec": {
|
| 440 |
+
"display_name": "Python 3 (ipykernel) (Local)",
|
| 441 |
+
"language": "python",
|
| 442 |
+
"name": "python3"
|
| 443 |
+
},
|
| 444 |
+
"language_info": {
|
| 445 |
+
"codemirror_mode": {
|
| 446 |
+
"name": "ipython",
|
| 447 |
+
"version": 3
|
| 448 |
+
},
|
| 449 |
+
"file_extension": ".py",
|
| 450 |
+
"mimetype": "text/x-python",
|
| 451 |
+
"name": "python",
|
| 452 |
+
"nbconvert_exporter": "python",
|
| 453 |
+
"pygments_lexer": "ipython3",
|
| 454 |
+
"version": "3.10.13"
|
| 455 |
+
}
|
| 456 |
+
},
|
| 457 |
+
"nbformat": 4,
|
| 458 |
+
"nbformat_minor": 5
|
| 459 |
+
}
|