SanthoshToorpu commited on
Commit
8e679a9
·
verified ·
1 Parent(s): 25f88d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -6,11 +6,68 @@ tags:
6
  - unsloth
7
  - llama
8
  - trl
 
 
 
 
9
  license: apache-2.0
10
  language:
11
  - en
12
  ---
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Uploaded model
15
 
16
  - **Developed by:** SanthoshToorpu
 
6
  - unsloth
7
  - llama
8
  - trl
9
+ - minecraft
10
+ - mineflayer
11
+ - code-generation
12
+ - gaming
13
  license: apache-2.0
14
  language:
15
  - en
16
  ---
17
 
18
+ # Minecraft Bot Code Generation Model
19
+
20
+ - **Developed by:** SanthoshToorpu
21
+ - **License:** apache-2.0
22
+ - **Finetuned from model:** unsloth/llama-3.2-3b-instruct-bnb-4bit
23
+
24
+ A specialized LLaMA 3.2 model fine-tuned to generate Mineflayer-compatible JavaScript code for Minecraft bot automation.
25
+
26
+ ## Model Description
27
+
28
+ This model generates executable JavaScript code using the [Mineflayer](https://github.com/PrismarineJS/mineflayer) API to create intelligent Minecraft bots. It can produce code for various bot behaviors including mining, building, combat, navigation, and server interaction.
29
+
30
+ ## Data Creation Process
31
+
32
+ 1. **Source Dataset**: [MineDojo](https://minedojo.org/) - A comprehensive dataset containing Minecraft gameplay data, tutorials, and documentation
33
+ 2. **QA Generation**: MineDojo data was processed through LLaMA Scout model hosted on Groq to generate question-answer pairs focused on Minecraft bot programming scenarios
34
+ 3. **Data Refinement**: Generated QA pairs were further processed using ChatComplete by Unstip for quality improvement
35
+ 4. **Fine-tuning**: The curated dataset was used to fine-tune LLaMA 3.2 3B using Unsloth for 2x faster training
36
+
37
+ ## Usage
38
+
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForCausalLM
41
+
42
+ tokenizer = AutoTokenizer.from_pretrained("SanthoshToorpu/minecraft-bot-model")
43
+ model = AutoModelForCausalLM.from_pretrained("SanthoshToorpu/minecraft-bot-model")
44
+
45
+ prompt = "Create a bot that automatically farms wheat"
46
+ inputs = tokenizer(prompt, return_tensors="pt")
47
+ outputs = model.generate(**inputs, max_length=200)
48
+ code = tokenizer.decode(outputs[0], skip_special_tokens=True)
49
+ ```
50
+
51
+ ## Capabilities
52
+
53
+ - **Movement & Navigation**: Pathfinding, exploration, terrain traversal
54
+ - **Resource Management**: Mining, crafting, inventory organization
55
+ - **Building & Construction**: Automated structure creation
56
+ - **Combat Systems**: PvP and PvE bot behaviors
57
+ - **Server Integration**: Chat commands, multiplayer coordination
58
+
59
+ ## Training Details
60
+
61
+ This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library.
62
+
63
+ ## References
64
+
65
+ - [MineDojo Dataset](https://minedojo.org/)
66
+ - [MineDojo Paper](https://arxiv.org/abs/2206.08853)
67
+ - [Mineflayer Documentation](https://github.com/PrismarineJS/mineflayer)
68
+
69
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
70
+
71
  # Uploaded model
72
 
73
  - **Developed by:** SanthoshToorpu