Shuu12121 commited on
Commit
e35b241
·
verified ·
1 Parent(s): cbfd09a

Upload ModernBERT model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7059200
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: Shuu12121/CodeModernBERT-Owl-3.0
10
+ widget:
11
+ - source_sentence: 'The maximum value of the slider. (default 0) <P>
12
+
13
+ @return Returns the value of the attribute, or 0, if it hasn''t been set by the
14
+ JSF file.'
15
+ sentences:
16
+ - "@Override\n public UpdateSmsChannelResult updateSmsChannel(UpdateSmsChannelRequest\
17
+ \ request) {\n request = beforeClientExecution(request);\n return\
18
+ \ executeUpdateSmsChannel(request);\n }"
19
+ - "async function isValidOrigin(origin, sourceOrigin) {\n // This will fetch\
20
+ \ the caches from https://cdn.ampproject.org/caches.json the first time it's\n\
21
+ \ // called. Subsequent calls will receive a cached version.\n const officialCacheList\
22
+ \ = await caches.list();\n // Calculate the cache specific origin\n const\
23
+ \ cacheSubdomain = `https://${await createCacheSubdomain(sourceOrigin)}.`;\n \
24
+ \ // Check all caches listed on ampproject.org\n for (const cache of officialCacheList)\
25
+ \ {\n const cachedOrigin = cacheSubdomain + cache.cacheDomain;\n if\
26
+ \ (origin === cachedOrigin) {\n return true;\n }\n }\n return\
27
+ \ false;\n }"
28
+ - "public java.lang.Object getMin() {\n\t\treturn (java.lang.Object) getStateHelper().eval(PropertyKeys.min,\
29
+ \ 0);\n\t}"
30
+ - source_sentence: 'The Method from the Date.getMinutes is deprecated. This is a helper-Method.
31
+
32
+
33
+ @param date
34
+
35
+ The Date-object to get the minutes.
36
+
37
+ @return The minutes from the Date-object.'
38
+ sentences:
39
+ - "public static int getMinutes(final Date date)\n\t{\n\t\tfinal Calendar calendar\
40
+ \ = Calendar.getInstance();\n\t\tcalendar.setTime(date);\n\t\treturn calendar.get(Calendar.MINUTE);\n\
41
+ \t}"
42
+ - "func (opts BeeOptions) Bind(name string, dst interface{}) error {\n\tv := opts.Value(name)\n\
43
+ \tif v == nil {\n\t\treturn errors.New(\"Option with name \" + name + \" not found\"\
44
+ )\n\t}\n\n\treturn ConvertValue(v, dst)\n}"
45
+ - "public function createFor(Customer $customer, array $options = [], array $filters\
46
+ \ = [])\n {\n $this->parentId = $customer->id;\n\n return parent::rest_create($options,\
47
+ \ $filters);\n }"
48
+ - source_sentence: "Return a list of all dates from 11/12/2015 to the present.\n\n\
49
+ \ Args:\n boo: if true, list contains Numbers (20151230); if false, list contains\
50
+ \ Strings (\"2015-12-30\")\n Returns:\n list of either Numbers or Strings"
51
+ sentences:
52
+ - "def all_days(boo):\n \n earliest = datetime.strptime(('2015-11-12').replace('-',\
53
+ \ ' '), '%Y %m %d')\n latest = datetime.strptime(datetime.today().date().isoformat().replace('-',\
54
+ \ ' '), '%Y %m %d')\n num_days = (latest - earliest).days + 1\n all_days = [latest\
55
+ \ - timedelta(days=x) for x in range(num_days)]\n all_days.reverse()\n\n output\
56
+ \ = []\n\n if boo:\n # Return as Integer, yyyymmdd\n for d in all_days:\n\
57
+ \ output.append(int(str(d).replace('-', '')[:8]))\n else:\n # Return\
58
+ \ as String, yyyy-mm-dd\n for d in all_days:\n output.append(str(d)[:10])\n\
59
+ \ return output"
60
+ - "public void setColSize3(Integer newColSize3) {\n\t\tInteger oldColSize3 = colSize3;\n\
61
+ \t\tcolSize3 = newColSize3;\n\t\tif (eNotificationRequired())\n\t\t\teNotify(new\
62
+ \ ENotificationImpl(this, Notification.SET, AfplibPackage.COLOR_SPECIFICATION__COL_SIZE3,\
63
+ \ oldColSize3, colSize3));\n\t}"
64
+ - "public function deleteCompanyBusinessUnitStoreAddress(CompanyBusinessUnitStoreAddressTransfer\
65
+ \ $companyBusinessUnitStoreAddressTransfer): void\n {\n $this->getFactory()\n\
66
+ \ ->createFosCompanyBusinessUnitStoreAddressQuery()\n ->findOneByIdCompanyBusinessUnitStoreAddress($companyBusinessUnitStoreAddressTransfer->getIdCompanyBusinessUnitStoreAddress())\n\
67
+ \ ->delete();\n }"
68
+ - source_sentence: 'Returns array of basket oxarticle objects
69
+
70
+
71
+ @return array'
72
+ sentences:
73
+ - "public function visit(NodeVisitorInterface $visitor)\n {\n foreach\
74
+ \ ($this->children as $child)\n {\n $child->visit($visitor);\n\
75
+ \ }\n }"
76
+ - "func GetColDefaultValue(ctx sessionctx.Context, col *model.ColumnInfo) (types.Datum,\
77
+ \ error) {\n\treturn getColDefaultValue(ctx, col, col.GetDefaultValue())\n}"
78
+ - "public function getBasketArticles()\n {\n $aBasketArticles = [];\n\
79
+ \ /** @var \\oxBasketItem $oBasketItem */\n foreach ($this->_aBasketContents\
80
+ \ as $sItemKey => $oBasketItem) {\n try {\n $oProduct\
81
+ \ = $oBasketItem->getArticle(true);\n\n if (\\OxidEsales\\Eshop\\\
82
+ Core\\Registry::getConfig()->getConfigParam('bl_perfLoadSelectLists')) {\n \
83
+ \ // marking chosen select list\n $aSelList\
84
+ \ = $oBasketItem->getSelList();\n if (is_array($aSelList) &&\
85
+ \ ($aSelectlist = $oProduct->getSelectLists($sItemKey))) {\n \
86
+ \ reset($aSelList);\n foreach ($aSelList as $conkey\
87
+ \ => $iSel) {\n $aSelectlist[$conkey][$iSel]->selected\
88
+ \ = 1;\n }\n $oProduct->setSelectlist($aSelectlist);\n\
89
+ \ }\n }\n } catch (\\OxidEsales\\\
90
+ Eshop\\Core\\Exception\\NoArticleException $oEx) {\n \\OxidEsales\\\
91
+ Eshop\\Core\\Registry::getUtilsView()->addErrorToDisplay($oEx);\n \
92
+ \ $this->removeItem($sItemKey);\n $this->calculateBasket(true);\n\
93
+ \ continue;\n } catch (\\OxidEsales\\Eshop\\Core\\Exception\\\
94
+ ArticleInputException $oEx) {\n \\OxidEsales\\Eshop\\Core\\Registry::getUtilsView()->addErrorToDisplay($oEx);\n\
95
+ \ $this->removeItem($sItemKey);\n $this->calculateBasket(true);\n\
96
+ \ continue;\n }\n\n $aBasketArticles[$sItemKey]\
97
+ \ = $oProduct;\n }\n\n return $aBasketArticles;\n }"
98
+ - source_sentence: get test root
99
+ sentences:
100
+ - "@CheckReturnValue\n @SchedulerSupport(SchedulerSupport.NONE)\n public final\
101
+ \ Maybe<T> doOnDispose(Action onDispose) {\n return RxJavaPlugins.onAssembly(new\
102
+ \ MaybePeek<T>(this,\n Functions.emptyConsumer(), // onSubscribe\n\
103
+ \ Functions.emptyConsumer(), // onSuccess\n Functions.emptyConsumer(),\
104
+ \ // onError\n Functions.EMPTY_ACTION, // onComplete\n \
105
+ \ Functions.EMPTY_ACTION, // (onSuccess | onError | onComplete) after\n\
106
+ \ ObjectHelper.requireNonNull(onDispose, \"onDispose is null\"\
107
+ )\n ));\n }"
108
+ - "protected Object parseKeyElement(Element keyEle, BeanDefinition bd, String defaultKeyTypeName)\
109
+ \ {\n NodeList nl = keyEle.getChildNodes();\n Element subElement = null;\n\
110
+ \ for (int i = 0; i < nl.getLength(); i++) {\n Node node = nl.item(i);\n\
111
+ \ if (node instanceof Element) {\n // Child element is what we're\
112
+ \ looking for.\n if (subElement != null)\n error(\"<key> element\
113
+ \ must not contain more than one value sub-element\", keyEle);\n else subElement\
114
+ \ = (Element) node;\n }\n }\n return parsePropertySubElement(subElement,\
115
+ \ bd, defaultKeyTypeName);\n }"
116
+ - "function getRootPath(){\n var rootPath = path.resolve('.');\n while(rootPath){\n\
117
+ \ if(fs.existsSync(rootPath + '/config.json')){\n break;\n \
118
+ \ }\n rootPath = rootPath.substring(0, rootPath.lastIndexOf(path.sep));\n\
119
+ \ }\n return rootPath;\n}"
120
+ pipeline_tag: sentence-similarity
121
+ library_name: sentence-transformers
122
+ ---
123
+
124
+ # SentenceTransformer based on Shuu12121/CodeModernBERT-Owl-3.0
125
+
126
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Owl-3.0](https://huggingface.co/Shuu12121/CodeModernBERT-Owl-3.0). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
127
+
128
+ ## Model Details
129
+
130
+ ### Model Description
131
+ - **Model Type:** Sentence Transformer
132
+ - **Base model:** [Shuu12121/CodeModernBERT-Owl-3.0](https://huggingface.co/Shuu12121/CodeModernBERT-Owl-3.0) <!-- at revision a6beebbd776ae122f34f875dfa731557a1f70d8f -->
133
+ - **Maximum Sequence Length:** 1024 tokens
134
+ - **Output Dimensionality:** 768 dimensions
135
+ - **Similarity Function:** Cosine Similarity
136
+ <!-- - **Training Dataset:** Unknown -->
137
+ <!-- - **Language:** Unknown -->
138
+ <!-- - **License:** Unknown -->
139
+
140
+ ### Model Sources
141
+
142
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
143
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
144
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
145
+
146
+ ### Full Model Architecture
147
+
148
+ ```
149
+ SentenceTransformer(
150
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
151
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
152
+ )
153
+ ```
154
+
155
+ ## Usage
156
+
157
+ ### Direct Usage (Sentence Transformers)
158
+
159
+ First install the Sentence Transformers library:
160
+
161
+ ```bash
162
+ pip install -U sentence-transformers
163
+ ```
164
+
165
+ Then you can load this model and run inference.
166
+ ```python
167
+ from sentence_transformers import SentenceTransformer
168
+
169
+ # Download from the 🤗 Hub
170
+ model = SentenceTransformer("sentence_transformers_model_id")
171
+ # Run inference
172
+ sentences = [
173
+ 'get test root',
174
+ "function getRootPath(){\n var rootPath = path.resolve('.');\n while(rootPath){\n if(fs.existsSync(rootPath + '/config.json')){\n break;\n }\n rootPath = rootPath.substring(0, rootPath.lastIndexOf(path.sep));\n }\n return rootPath;\n}",
175
+ 'protected Object parseKeyElement(Element keyEle, BeanDefinition bd, String defaultKeyTypeName) {\n NodeList nl = keyEle.getChildNodes();\n Element subElement = null;\n for (int i = 0; i < nl.getLength(); i++) {\n Node node = nl.item(i);\n if (node instanceof Element) {\n // Child element is what we\'re looking for.\n if (subElement != null)\n error("<key> element must not contain more than one value sub-element", keyEle);\n else subElement = (Element) node;\n }\n }\n return parsePropertySubElement(subElement, bd, defaultKeyTypeName);\n }',
176
+ ]
177
+ embeddings = model.encode(sentences)
178
+ print(embeddings.shape)
179
+ # [3, 768]
180
+
181
+ # Get the similarity scores for the embeddings
182
+ similarities = model.similarity(embeddings, embeddings)
183
+ print(similarities.shape)
184
+ # [3, 3]
185
+ ```
186
+
187
+ <!--
188
+ ### Direct Usage (Transformers)
189
+
190
+ <details><summary>Click to see the direct usage in Transformers</summary>
191
+
192
+ </details>
193
+ -->
194
+
195
+ <!--
196
+ ### Downstream Usage (Sentence Transformers)
197
+
198
+ You can finetune this model on your own dataset.
199
+
200
+ <details><summary>Click to expand</summary>
201
+
202
+ </details>
203
+ -->
204
+
205
+ <!--
206
+ ### Out-of-Scope Use
207
+
208
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
209
+ -->
210
+
211
+ <!--
212
+ ## Bias, Risks and Limitations
213
+
214
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
215
+ -->
216
+
217
+ <!--
218
+ ### Recommendations
219
+
220
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
221
+ -->
222
+
223
+ ## Training Details
224
+
225
+ ### Training Dataset
226
+
227
+ #### Unnamed Dataset
228
+
229
+ * Size: 7,059,200 training samples
230
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
231
+ * Approximate statistics based on the first 1000 samples:
232
+ | | sentence_0 | sentence_1 | label |
233
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
234
+ | type | string | string | float |
235
+ | details | <ul><li>min: 3 tokens</li><li>mean: 51.42 tokens</li><li>max: 974 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 162.71 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
236
+ * Samples:
237
+ | sentence_0 | sentence_1 | label |
238
+ |:---------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
239
+ | <code>// SetDefaultVersionId sets the DefaultVersionId field's value.</code> | <code>func (s *Policy) SetDefaultVersionId(v string) *Policy {<br> s.DefaultVersionId = &v<br> return s<br>}</code> | <code>1.0</code> |
240
+ | <code>// SetNextPageToken sets the NextPageToken field's value.</code> | <code>func (s *ListBudgetsForResourceOutput) SetNextPageToken(v string) *ListBudgetsForResourceOutput {<br> s.NextPageToken = &v<br> return s<br>}</code> | <code>1.0</code> |
241
+ | <code>// SetHealthyThresholdCount sets the HealthyThresholdCount field's value.</code> | <code>func (s *TargetGroup) SetHealthyThresholdCount(v int64) *TargetGroup {<br> s.HealthyThresholdCount = &v<br> return s<br>}</code> | <code>1.0</code> |
242
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
243
+ ```json
244
+ {
245
+ "scale": 20.0,
246
+ "similarity_fct": "cos_sim"
247
+ }
248
+ ```
249
+
250
+ ### Training Hyperparameters
251
+ #### Non-Default Hyperparameters
252
+
253
+ - `per_device_train_batch_size`: 200
254
+ - `per_device_eval_batch_size`: 200
255
+ - `fp16`: True
256
+ - `multi_dataset_batch_sampler`: round_robin
257
+
258
+ #### All Hyperparameters
259
+ <details><summary>Click to expand</summary>
260
+
261
+ - `overwrite_output_dir`: False
262
+ - `do_predict`: False
263
+ - `eval_strategy`: no
264
+ - `prediction_loss_only`: True
265
+ - `per_device_train_batch_size`: 200
266
+ - `per_device_eval_batch_size`: 200
267
+ - `per_gpu_train_batch_size`: None
268
+ - `per_gpu_eval_batch_size`: None
269
+ - `gradient_accumulation_steps`: 1
270
+ - `eval_accumulation_steps`: None
271
+ - `torch_empty_cache_steps`: None
272
+ - `learning_rate`: 5e-05
273
+ - `weight_decay`: 0.0
274
+ - `adam_beta1`: 0.9
275
+ - `adam_beta2`: 0.999
276
+ - `adam_epsilon`: 1e-08
277
+ - `max_grad_norm`: 1
278
+ - `num_train_epochs`: 3
279
+ - `max_steps`: -1
280
+ - `lr_scheduler_type`: linear
281
+ - `lr_scheduler_kwargs`: {}
282
+ - `warmup_ratio`: 0.0
283
+ - `warmup_steps`: 0
284
+ - `log_level`: passive
285
+ - `log_level_replica`: warning
286
+ - `log_on_each_node`: True
287
+ - `logging_nan_inf_filter`: True
288
+ - `save_safetensors`: True
289
+ - `save_on_each_node`: False
290
+ - `save_only_model`: False
291
+ - `restore_callback_states_from_checkpoint`: False
292
+ - `no_cuda`: False
293
+ - `use_cpu`: False
294
+ - `use_mps_device`: False
295
+ - `seed`: 42
296
+ - `data_seed`: None
297
+ - `jit_mode_eval`: False
298
+ - `use_ipex`: False
299
+ - `bf16`: False
300
+ - `fp16`: True
301
+ - `fp16_opt_level`: O1
302
+ - `half_precision_backend`: auto
303
+ - `bf16_full_eval`: False
304
+ - `fp16_full_eval`: False
305
+ - `tf32`: None
306
+ - `local_rank`: 0
307
+ - `ddp_backend`: None
308
+ - `tpu_num_cores`: None
309
+ - `tpu_metrics_debug`: False
310
+ - `debug`: []
311
+ - `dataloader_drop_last`: False
312
+ - `dataloader_num_workers`: 0
313
+ - `dataloader_prefetch_factor`: None
314
+ - `past_index`: -1
315
+ - `disable_tqdm`: False
316
+ - `remove_unused_columns`: True
317
+ - `label_names`: None
318
+ - `load_best_model_at_end`: False
319
+ - `ignore_data_skip`: False
320
+ - `fsdp`: []
321
+ - `fsdp_min_num_params`: 0
322
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
323
+ - `fsdp_transformer_layer_cls_to_wrap`: None
324
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
325
+ - `deepspeed`: None
326
+ - `label_smoothing_factor`: 0.0
327
+ - `optim`: adamw_torch
328
+ - `optim_args`: None
329
+ - `adafactor`: False
330
+ - `group_by_length`: False
331
+ - `length_column_name`: length
332
+ - `ddp_find_unused_parameters`: None
333
+ - `ddp_bucket_cap_mb`: None
334
+ - `ddp_broadcast_buffers`: False
335
+ - `dataloader_pin_memory`: True
336
+ - `dataloader_persistent_workers`: False
337
+ - `skip_memory_metrics`: True
338
+ - `use_legacy_prediction_loop`: False
339
+ - `push_to_hub`: False
340
+ - `resume_from_checkpoint`: None
341
+ - `hub_model_id`: None
342
+ - `hub_strategy`: every_save
343
+ - `hub_private_repo`: None
344
+ - `hub_always_push`: False
345
+ - `gradient_checkpointing`: False
346
+ - `gradient_checkpointing_kwargs`: None
347
+ - `include_inputs_for_metrics`: False
348
+ - `include_for_metrics`: []
349
+ - `eval_do_concat_batches`: True
350
+ - `fp16_backend`: auto
351
+ - `push_to_hub_model_id`: None
352
+ - `push_to_hub_organization`: None
353
+ - `mp_parameters`:
354
+ - `auto_find_batch_size`: False
355
+ - `full_determinism`: False
356
+ - `torchdynamo`: None
357
+ - `ray_scope`: last
358
+ - `ddp_timeout`: 1800
359
+ - `torch_compile`: False
360
+ - `torch_compile_backend`: None
361
+ - `torch_compile_mode`: None
362
+ - `include_tokens_per_second`: False
363
+ - `include_num_input_tokens_seen`: False
364
+ - `neftune_noise_alpha`: None
365
+ - `optim_target_modules`: None
366
+ - `batch_eval_metrics`: False
367
+ - `eval_on_start`: False
368
+ - `use_liger_kernel`: False
369
+ - `eval_use_gather_object`: False
370
+ - `average_tokens_across_devices`: False
371
+ - `prompts`: None
372
+ - `batch_sampler`: batch_sampler
373
+ - `multi_dataset_batch_sampler`: round_robin
374
+
375
+ </details>
376
+
377
+ ### Training Logs
378
+ <details><summary>Click to expand</summary>
379
+
380
+ | Epoch | Step | Training Loss |
381
+ |:------:|:------:|:-------------:|
382
+ | 0.0142 | 500 | 1.1661 |
383
+ | 0.0283 | 1000 | 0.1176 |
384
+ | 0.0425 | 1500 | 0.1096 |
385
+ | 0.0567 | 2000 | 0.1013 |
386
+ | 0.0708 | 2500 | 0.0967 |
387
+ | 0.0850 | 3000 | 0.0912 |
388
+ | 0.0992 | 3500 | 0.0886 |
389
+ | 0.1133 | 4000 | 0.0799 |
390
+ | 0.1275 | 4500 | 0.0776 |
391
+ | 0.1417 | 5000 | 0.0757 |
392
+ | 0.1558 | 5500 | 0.0751 |
393
+ | 0.1700 | 6000 | 0.0714 |
394
+ | 0.1842 | 6500 | 0.0703 |
395
+ | 0.1983 | 7000 | 0.0667 |
396
+ | 0.2125 | 7500 | 0.0674 |
397
+ | 0.2267 | 8000 | 0.0625 |
398
+ | 0.2408 | 8500 | 0.0598 |
399
+ | 0.2550 | 9000 | 0.0597 |
400
+ | 0.2692 | 9500 | 0.0585 |
401
+ | 0.2833 | 10000 | 0.0568 |
402
+ | 0.2975 | 10500 | 0.055 |
403
+ | 0.3117 | 11000 | 0.0554 |
404
+ | 0.3258 | 11500 | 0.0529 |
405
+ | 0.3400 | 12000 | 0.0516 |
406
+ | 0.3541 | 12500 | 0.0506 |
407
+ | 0.3683 | 13000 | 0.05 |
408
+ | 0.3825 | 13500 | 0.0484 |
409
+ | 0.3966 | 14000 | 0.0472 |
410
+ | 0.4108 | 14500 | 0.0468 |
411
+ | 0.4250 | 15000 | 0.045 |
412
+ | 0.4391 | 15500 | 0.046 |
413
+ | 0.4533 | 16000 | 0.0452 |
414
+ | 0.4675 | 16500 | 0.0428 |
415
+ | 0.4816 | 17000 | 0.0424 |
416
+ | 0.4958 | 17500 | 0.04 |
417
+ | 0.5100 | 18000 | 0.0402 |
418
+ | 0.5241 | 18500 | 0.0391 |
419
+ | 0.5383 | 19000 | 0.0389 |
420
+ | 0.5525 | 19500 | 0.0385 |
421
+ | 0.5666 | 20000 | 0.0357 |
422
+ | 0.5808 | 20500 | 0.0362 |
423
+ | 0.5950 | 21000 | 0.0369 |
424
+ | 0.6091 | 21500 | 0.0372 |
425
+ | 0.6233 | 22000 | 0.0351 |
426
+ | 0.6375 | 22500 | 0.034 |
427
+ | 0.6516 | 23000 | 0.0364 |
428
+ | 0.6658 | 23500 | 0.033 |
429
+ | 0.6800 | 24000 | 0.0336 |
430
+ | 0.6941 | 24500 | 0.0302 |
431
+ | 0.7083 | 25000 | 0.0309 |
432
+ | 0.7225 | 25500 | 0.0306 |
433
+ | 0.7366 | 26000 | 0.0316 |
434
+ | 0.7508 | 26500 | 0.0306 |
435
+ | 0.7650 | 27000 | 0.0307 |
436
+ | 0.7791 | 27500 | 0.0303 |
437
+ | 0.7933 | 28000 | 0.028 |
438
+ | 0.8075 | 28500 | 0.0289 |
439
+ | 0.8216 | 29000 | 0.0297 |
440
+ | 0.8358 | 29500 | 0.0281 |
441
+ | 0.8500 | 30000 | 0.029 |
442
+ | 0.8641 | 30500 | 0.027 |
443
+ | 0.8783 | 31000 | 0.0282 |
444
+ | 0.8925 | 31500 | 0.0264 |
445
+ | 0.9066 | 32000 | 0.027 |
446
+ | 0.9208 | 32500 | 0.0259 |
447
+ | 0.9350 | 33000 | 0.0272 |
448
+ | 0.9491 | 33500 | 0.0275 |
449
+ | 0.9633 | 34000 | 0.0244 |
450
+ | 0.9774 | 34500 | 0.0254 |
451
+ | 0.9916 | 35000 | 0.0261 |
452
+ | 1.0058 | 35500 | 0.0189 |
453
+ | 1.0199 | 36000 | 0.0118 |
454
+ | 1.0341 | 36500 | 0.012 |
455
+ | 1.0483 | 37000 | 0.0118 |
456
+ | 1.0624 | 37500 | 0.0109 |
457
+ | 1.0766 | 38000 | 0.0123 |
458
+ | 1.0908 | 38500 | 0.0122 |
459
+ | 1.1049 | 39000 | 0.0122 |
460
+ | 1.1191 | 39500 | 0.0123 |
461
+ | 1.1333 | 40000 | 0.0117 |
462
+ | 1.1474 | 40500 | 0.0115 |
463
+ | 1.1616 | 41000 | 0.0122 |
464
+ | 1.1758 | 41500 | 0.0117 |
465
+ | 1.1899 | 42000 | 0.0119 |
466
+ | 1.2041 | 42500 | 0.0112 |
467
+ | 1.2183 | 43000 | 0.0122 |
468
+ | 1.2324 | 43500 | 0.0116 |
469
+ | 1.2466 | 44000 | 0.0107 |
470
+ | 1.2608 | 44500 | 0.0126 |
471
+ | 1.2749 | 45000 | 0.0114 |
472
+ | 1.2891 | 45500 | 0.011 |
473
+ | 1.3033 | 46000 | 0.0116 |
474
+ | 1.3174 | 46500 | 0.0114 |
475
+ | 1.3316 | 47000 | 0.0111 |
476
+ | 1.3458 | 47500 | 0.0112 |
477
+ | 1.3599 | 48000 | 0.0112 |
478
+ | 1.3741 | 48500 | 0.0115 |
479
+ | 1.3883 | 49000 | 0.0104 |
480
+ | 1.4024 | 49500 | 0.0109 |
481
+ | 1.4166 | 50000 | 0.0113 |
482
+ | 1.4308 | 50500 | 0.0115 |
483
+ | 1.4449 | 51000 | 0.0103 |
484
+ | 1.4591 | 51500 | 0.0114 |
485
+ | 1.4733 | 52000 | 0.0104 |
486
+ | 1.4874 | 52500 | 0.0106 |
487
+ | 1.5016 | 53000 | 0.0103 |
488
+ | 1.5158 | 53500 | 0.0102 |
489
+ | 1.5299 | 54000 | 0.0101 |
490
+ | 1.5441 | 54500 | 0.0104 |
491
+ | 1.5583 | 55000 | 0.011 |
492
+ | 1.5724 | 55500 | 0.0107 |
493
+ | 1.5866 | 56000 | 0.0097 |
494
+ | 1.6007 | 56500 | 0.0099 |
495
+ | 1.6149 | 57000 | 0.0102 |
496
+ | 1.6291 | 57500 | 0.0098 |
497
+ | 1.6432 | 58000 | 0.01 |
498
+ | 1.6574 | 58500 | 0.0096 |
499
+ | 1.6716 | 59000 | 0.0099 |
500
+ | 1.6857 | 59500 | 0.0103 |
501
+ | 1.6999 | 60000 | 0.0098 |
502
+ | 1.7141 | 60500 | 0.0097 |
503
+ | 1.7282 | 61000 | 0.0094 |
504
+ | 1.7424 | 61500 | 0.0093 |
505
+ | 1.7566 | 62000 | 0.0102 |
506
+ | 1.7707 | 62500 | 0.0099 |
507
+ | 1.7849 | 63000 | 0.0098 |
508
+ | 1.7991 | 63500 | 0.009 |
509
+ | 1.8132 | 64000 | 0.0097 |
510
+ | 1.8274 | 64500 | 0.009 |
511
+ | 1.8416 | 65000 | 0.0093 |
512
+ | 1.8557 | 65500 | 0.0092 |
513
+ | 1.8699 | 66000 | 0.0095 |
514
+ | 1.8841 | 66500 | 0.0093 |
515
+ | 1.8982 | 67000 | 0.0094 |
516
+ | 1.9124 | 67500 | 0.0089 |
517
+ | 1.9266 | 68000 | 0.0091 |
518
+ | 1.9407 | 68500 | 0.0089 |
519
+ | 1.9549 | 69000 | 0.0084 |
520
+ | 1.9691 | 69500 | 0.0087 |
521
+ | 1.9832 | 70000 | 0.0094 |
522
+ | 1.9974 | 70500 | 0.0085 |
523
+ | 2.0116 | 71000 | 0.0049 |
524
+ | 2.0257 | 71500 | 0.0041 |
525
+ | 2.0399 | 72000 | 0.0039 |
526
+ | 2.0541 | 72500 | 0.0038 |
527
+ | 2.0682 | 73000 | 0.004 |
528
+ | 2.0824 | 73500 | 0.0039 |
529
+ | 2.0966 | 74000 | 0.0038 |
530
+ | 2.1107 | 74500 | 0.0041 |
531
+ | 2.1249 | 75000 | 0.0037 |
532
+ | 2.1391 | 75500 | 0.0038 |
533
+ | 2.1532 | 76000 | 0.0041 |
534
+ | 2.1674 | 76500 | 0.0036 |
535
+ | 2.1816 | 77000 | 0.0039 |
536
+ | 2.1957 | 77500 | 0.0039 |
537
+ | 2.2099 | 78000 | 0.0038 |
538
+ | 2.2240 | 78500 | 0.0038 |
539
+ | 2.2382 | 79000 | 0.0037 |
540
+ | 2.2524 | 79500 | 0.0037 |
541
+ | 2.2665 | 80000 | 0.0036 |
542
+ | 2.2807 | 80500 | 0.0038 |
543
+ | 2.2949 | 81000 | 0.0037 |
544
+ | 2.3090 | 81500 | 0.0036 |
545
+ | 2.3232 | 82000 | 0.0036 |
546
+ | 2.3374 | 82500 | 0.0038 |
547
+ | 2.3515 | 83000 | 0.0037 |
548
+ | 2.3657 | 83500 | 0.0037 |
549
+ | 2.3799 | 84000 | 0.0038 |
550
+ | 2.3940 | 84500 | 0.0037 |
551
+ | 2.4082 | 85000 | 0.0036 |
552
+ | 2.4224 | 85500 | 0.0034 |
553
+ | 2.4365 | 86000 | 0.0035 |
554
+ | 2.4507 | 86500 | 0.0033 |
555
+ | 2.4649 | 87000 | 0.0036 |
556
+ | 2.4790 | 87500 | 0.0035 |
557
+ | 2.4932 | 88000 | 0.0034 |
558
+ | 2.5074 | 88500 | 0.0034 |
559
+ | 2.5215 | 89000 | 0.0034 |
560
+ | 2.5357 | 89500 | 0.0031 |
561
+ | 2.5499 | 90000 | 0.0033 |
562
+ | 2.5640 | 90500 | 0.0033 |
563
+ | 2.5782 | 91000 | 0.0035 |
564
+ | 2.5924 | 91500 | 0.0033 |
565
+ | 2.6065 | 92000 | 0.0032 |
566
+ | 2.6207 | 92500 | 0.0034 |
567
+ | 2.6349 | 93000 | 0.0031 |
568
+ | 2.6490 | 93500 | 0.0032 |
569
+ | 2.6632 | 94000 | 0.0032 |
570
+ | 2.6774 | 94500 | 0.0033 |
571
+ | 2.6915 | 95000 | 0.0032 |
572
+ | 2.7057 | 95500 | 0.003 |
573
+ | 2.7199 | 96000 | 0.0032 |
574
+ | 2.7340 | 96500 | 0.0032 |
575
+ | 2.7482 | 97000 | 0.003 |
576
+ | 2.7624 | 97500 | 0.0032 |
577
+ | 2.7765 | 98000 | 0.0033 |
578
+ | 2.7907 | 98500 | 0.003 |
579
+ | 2.8049 | 99000 | 0.003 |
580
+ | 2.8190 | 99500 | 0.0031 |
581
+ | 2.8332 | 100000 | 0.0031 |
582
+ | 2.8473 | 100500 | 0.003 |
583
+ | 2.8615 | 101000 | 0.003 |
584
+ | 2.8757 | 101500 | 0.003 |
585
+ | 2.8898 | 102000 | 0.003 |
586
+ | 2.9040 | 102500 | 0.003 |
587
+ | 2.9182 | 103000 | 0.003 |
588
+ | 2.9323 | 103500 | 0.003 |
589
+ | 2.9465 | 104000 | 0.0033 |
590
+ | 2.9607 | 104500 | 0.0029 |
591
+ | 2.9748 | 105000 | 0.003 |
592
+ | 2.9890 | 105500 | 0.0028 |
593
+
594
+ </details>
595
+
596
+ ### Framework Versions
597
+ - Python: 3.11.13
598
+ - Sentence Transformers: 4.1.0
599
+ - Transformers: 4.52.4
600
+ - PyTorch: 2.6.0+cu124
601
+ - Accelerate: 1.7.0
602
+ - Datasets: 3.6.0
603
+ - Tokenizers: 0.21.1
604
+
605
+ ## Citation
606
+
607
+ ### BibTeX
608
+
609
+ #### Sentence Transformers
610
+ ```bibtex
611
+ @inproceedings{reimers-2019-sentence-bert,
612
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
613
+ author = "Reimers, Nils and Gurevych, Iryna",
614
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
615
+ month = "11",
616
+ year = "2019",
617
+ publisher = "Association for Computational Linguistics",
618
+ url = "https://arxiv.org/abs/1908.10084",
619
+ }
620
+ ```
621
+
622
+ #### MultipleNegativesRankingLoss
623
+ ```bibtex
624
+ @misc{henderson2017efficient,
625
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
626
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
627
+ year={2017},
628
+ eprint={1705.00652},
629
+ archivePrefix={arXiv},
630
+ primaryClass={cs.CL}
631
+ }
632
+ ```
633
+
634
+ <!--
635
+ ## Glossary
636
+
637
+ *Clearly define terms in order to be accessible across audiences.*
638
+ -->
639
+
640
+ <!--
641
+ ## Model Card Authors
642
+
643
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
644
+ -->
645
+
646
+ <!--
647
+ ## Model Card Contact
648
+
649
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
650
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 50001,
3
+ "<s>": 50000
4
+ }
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 50000,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "cls",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50001,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "hidden_activation": "gelu",
21
+ "hidden_dropout_prob": 0.1,
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "local_attention": 128,
27
+ "local_attention_rope_theta": 10000,
28
+ "local_attention_window": 128,
29
+ "local_rope_theta": 10000.0,
30
+ "max_position_embeddings": 8192,
31
+ "mlp_bias": false,
32
+ "mlp_dropout": 0.0,
33
+ "model_type": "modernbert",
34
+ "norm_bias": false,
35
+ "norm_eps": 1e-05,
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "pad_token_id": 1,
39
+ "repad_logits_with_grad": false,
40
+ "rope_theta": 160000,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.52.4",
46
+ "type_vocab_size": 2,
47
+ "vocab_size": 50005
48
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fddee72b9599d5ff528951f5cb0affb9988f2ed784612a01fe2790a2690ef131
3
+ size 606684184
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[UNK]",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[PAD]",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "[MASK]",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "50000": {
45
+ "content": "<s>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "50001": {
53
+ "content": "</s>",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "bos_token": "<s>",
62
+ "clean_up_tokenization_spaces": false,
63
+ "cls_token": "[CLS]",
64
+ "eos_token": "</s>",
65
+ "errors": "replace",
66
+ "extra_special_tokens": {},
67
+ "mask_token": "[MASK]",
68
+ "model_max_length": 1000000000000000019884624838656,
69
+ "pad_token": "[PAD]",
70
+ "sep_token": "[SEP]",
71
+ "tokenizer_class": "RobertaTokenizer",
72
+ "trim_offsets": true,
73
+ "unk_token": "[UNK]"
74
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff