Scikit-learn
English
Greek
IOT
CyberSecurity
Intrusion
Detection
IDS
File size: 1,752 Bytes
5f01070
 
 
1962a42
64c8971
5f01070
 
64c8971
5f01070
 
1962a42
5f01070
 
1962a42
 
 
 
 
64c8971
59e3022
 
 
 
 
f7a0a0e
59e3022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efd076a
bc96fd8
 
99464b2
 
 
bc96fd8
5f01070
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
datasets:
- SilverDragon9/UNSW_TON-IoT_Train_Test_IoT_Datasets
- SilverDragon9/UNSW_TON-IoT_Train_Test_OS_Datasets
language:
- en
- el
metrics:
- accuracy
- f1
- precision
tags:
- IOT
- CyberSecurity
- Intrusion
- Detection
- IDS
library_name: sklearn
---

---
## 🌐 Overview

**Sniffer.AI** is an AI-powered Intrusion Detection System (IDS) for **IoT networks**, designed to detect and classify suspicious behavior across smart devices in real-time. /n 
Built on ensemble machine learning models trained on the **UNSW TON_IoT dataset**, it classifies activity into `Normal` or one of **7 attack types**.

> πŸ“‘ Target Devices: Fridge, GPS Tracker, Garage Door, Thermostat, Weather Station  
> πŸ“ Output can be saved for **offline analysis and archiving**


## πŸ“¦ Key Features

| Feature                         | Description |
|----------------------------------|-------------|
| 🧠 Ensemble Models              | RF, XGBoost, AdaBoost, Bagging, Decision Trees |
| πŸ§ͺ Predicts Threat Category     | Normal vs 7 Attack Types |
| πŸ•’ Timestamps Every Detection   | Provides real-time date & time in output |
| πŸ’Ύ Downloadable Results         | Output can be saved as `.csv` or `.json` |
| 🌐 Edge Ready                   | Lightweight enough for IoT Gateway deployment |
| πŸ“š Dataset Used                | [UNSW TON_IoT](https://research.unsw.edu.au/projects/toniot-datasets) |

## πŸ” Attack Categories

- text
- Normal
- Backdoor
- DDoS
- Injection
- Password Attack
- Ransomware
- Scanning
- XSS

## πŸ“Š Sample Output Format

  | Date              | Time           | Prediction     |
  |--------------------|----------------|----------------|
  | 2025-04-11         |  14:35:22      | Scanning       |

---