File size: 1,752 Bytes
5f01070 1962a42 64c8971 5f01070 64c8971 5f01070 1962a42 5f01070 1962a42 64c8971 59e3022 f7a0a0e 59e3022 efd076a bc96fd8 99464b2 bc96fd8 5f01070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
datasets:
- SilverDragon9/UNSW_TON-IoT_Train_Test_IoT_Datasets
- SilverDragon9/UNSW_TON-IoT_Train_Test_OS_Datasets
language:
- en
- el
metrics:
- accuracy
- f1
- precision
tags:
- IOT
- CyberSecurity
- Intrusion
- Detection
- IDS
library_name: sklearn
---
---
## π Overview
**Sniffer.AI** is an AI-powered Intrusion Detection System (IDS) for **IoT networks**, designed to detect and classify suspicious behavior across smart devices in real-time. /n
Built on ensemble machine learning models trained on the **UNSW TON_IoT dataset**, it classifies activity into `Normal` or one of **7 attack types**.
> π‘ Target Devices: Fridge, GPS Tracker, Garage Door, Thermostat, Weather Station
> π Output can be saved for **offline analysis and archiving**
## π¦ Key Features
| Feature | Description |
|----------------------------------|-------------|
| π§ Ensemble Models | RF, XGBoost, AdaBoost, Bagging, Decision Trees |
| π§ͺ Predicts Threat Category | Normal vs 7 Attack Types |
| π Timestamps Every Detection | Provides real-time date & time in output |
| πΎ Downloadable Results | Output can be saved as `.csv` or `.json` |
| π Edge Ready | Lightweight enough for IoT Gateway deployment |
| π Dataset Used | [UNSW TON_IoT](https://research.unsw.edu.au/projects/toniot-datasets) |
## π Attack Categories
- text
- Normal
- Backdoor
- DDoS
- Injection
- Password Attack
- Ransomware
- Scanning
- XSS
## π Sample Output Format
| Date | Time | Prediction |
|--------------------|----------------|----------------|
| 2025-04-11 | 14:35:22 | Scanning |
--- |