Snarcy nielsr HF Staff commited on
Commit
50c97ee
·
verified ·
1 Parent(s): 7b8d0a2

Improve model card for RedDino-small: Update pipeline tag and add GitHub link (#1)

Browse files

- Improve model card for RedDino-small: Update pipeline tag and add GitHub link (d33281d43ff150fb779b93e1a4a0fe96ed168400)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +58 -71
README.md CHANGED
@@ -1,89 +1,70 @@
1
  ---
 
 
 
 
 
2
  license: cc-by-4.0
 
3
  tags:
4
- - red-blood-cells
5
- - hematology
6
- - medical-imaging
7
- - vision-transformer
8
- - dino
9
- - dinov2
10
- - feature-extraction
11
- - foundation-model
12
- library_name: timm
13
- datasets:
14
- - Elsafty
15
- - Chula
16
- - DSE
17
- pipeline_tag: feature-extraction
18
  model-index:
19
- - name: RedDino-small
20
- results:
21
- - task:
22
- type: image-classification
23
- name: RBC Shape Classification
24
- dataset:
25
- name: Elsafty
26
- type: Classification
27
- metrics:
28
- - type: Weighted F1
29
- value: 86.0
30
- - type: Balanced Accuracy
31
- value: 87.2
32
- - type: Accuracy
33
- value: 86.2
34
- - task:
35
- type: image-classification
36
- name: RBC Shape Classification
37
- dataset:
38
- name: Chula
39
- type: Classification
40
- metrics:
41
- - type: Weighted F1
42
- value: 84.3
43
- - type: Balanced Accuracy
44
- value: 78.5
45
- - type: Accuracy
46
- value: 84.4
47
- - task:
48
- type: image-classification
49
- name: RBC Shape Classification
50
- dataset:
51
- name: DSE
52
- type: Classification
53
- metrics:
54
- - type: Weighted F1
55
- value: 84.9
56
- - type: Balanced Accuracy
57
- value: 56.5
58
- - type: Accuracy
59
- value: 84.9
60
  ---
61
 
62
- # RedDino-small
63
 
64
- **RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
65
- This variant is the compact model in the family, delivering strong performance with lighter computational cost.
66
 
67
- It leverages a tailored version of the **DINOv2** framework, trained on a meticulously curated dataset of RBC images from diverse acquisition modalities and sources.
68
- The model excels at extracting robust features for downstream hematology tasks such as **shape classification**, **morphological subtype recognition**, and **batch-effect–robust analysis**.
69
 
70
- > 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
71
- > 🏥 University of Cagliari & Helmholtz Munich
72
- > 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
73
 
74
  ---
75
 
76
  ## Model Details
77
 
78
- - **Architecture:** ViT-small, patch size 14
79
- - **SSL framework:** DINOv2 (customized for RBC morphology)
80
- - **Pretraining dataset:** Curated RBC images from 18 datasets (multiple modalities and sources)
81
- - **Embedding size:** 384
82
- - **Intended use:** RBC morphology classification, feature extraction, batch-effect–robust analysis
83
 
84
  Notes:
85
- - Trained with RBC-specific augmentations and DINOv2 customizations (e.g., removal of KoLeo regularizer; Sinkhorn-Knopp centering).
86
- - Optimized using smear patches rather than only single-cell crops to improve generalization across sources.
87
 
88
  ## Example Usage
89
 
@@ -131,4 +112,10 @@ Preprint: arXiv:2508.08180. https://arxiv.org/abs/2508.08180
131
  primaryClass={cs.CV},
132
  url={https://arxiv.org/abs/2508.08180},
133
  }
134
- ```
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - Elsafty
4
+ - Chula
5
+ - DSE
6
+ library_name: timm
7
  license: cc-by-4.0
8
+ pipeline_tag: image-feature-extraction
9
  tags:
10
+ - red-blood-cells
11
+ - hematology
12
+ - medical-imaging
13
+ - vision-transformer
14
+ - dino
15
+ - dinov2
16
+ - foundation-model
 
 
 
 
 
 
 
17
  model-index:
18
+ - name: RedDino-small
19
+ results:
20
+ - task:
21
+ type: image-classification
22
+ name: RBC Shape Classification
23
+ dataset:
24
+ name: Elsafty
25
+ type: Classification
26
+ metrics:
27
+ - type: Weighted F1
28
+ value: 86.0
29
+ - type: Balanced Accuracy
30
+ value: 87.2
31
+ - type: Accuracy
32
+ value: 86.2
33
+ - type: Weighted F1
34
+ value: 84.3
35
+ - type: Balanced Accuracy
36
+ value: 78.5
37
+ - type: Accuracy
38
+ value: 84.4
39
+ - type: Weighted F1
40
+ value: 84.9
41
+ - type: Balanced Accuracy
42
+ value: 56.5
43
+ - type: Accuracy
44
+ value: 84.9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  ---
46
 
47
+ # RedDino: A foundation model for red blood cell analysis
48
 
49
+ [📄 Paper](https://arxiv.org/abs/2508.08180) | [💻 Code](https://github.com/Snarci/RedDino)
 
50
 
51
+ **RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis. This variant, **RedDino-small**, is the compact model in the family, delivering strong performance with lighter computational cost.
 
52
 
53
+ It leverages a tailored version of the **DINOv2** framework, trained on a meticulously curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources. The model excels at extracting robust features for downstream hematology tasks such as **shape classification**, **morphological subtype recognition**, and **batch-effect–robust analysis**.
 
 
54
 
55
  ---
56
 
57
  ## Model Details
58
 
59
+ - **Architecture:** ViT-small, patch size 14
60
+ - **SSL framework:** DINOv2 (customized for RBC morphology)
61
+ - **Pretraining dataset:** Curated RBC images from 18 datasets (multiple modalities and sources)
62
+ - **Embedding size:** 384
63
+ - **Intended use:** RBC morphology classification, feature extraction, batch-effect–robust analysis
64
 
65
  Notes:
66
+ - Trained with RBC-specific augmentations and DINOv2 customizations (e.g., removal of KoLeo regularizer; Sinkhorn-Knopp centering).
67
+ - Optimized using smear patches rather than only single-cell crops to improve generalization across sources.
68
 
69
  ## Example Usage
70
 
 
112
  primaryClass={cs.CV},
113
  url={https://arxiv.org/abs/2508.08180},
114
  }
115
+ ```
116
+
117
+ ---
118
+
119
+ ## Summary
120
+
121
+ RedDino is the first family of foundation models tailored for comprehensive red blood cell image analysis, using large-scale self-supervised learning to set new performance benchmarks and generalization standards for computational hematology. Models and pretrained weights are available for research and practical deployment.