Update README.md
Browse files
README.md
CHANGED
|
@@ -1,9 +1,134 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
tags:
|
| 4 |
+
- red-blood-cells
|
| 5 |
+
- hematology
|
| 6 |
+
- medical-imaging
|
| 7 |
+
- vision-transformer
|
| 8 |
+
- dino
|
| 9 |
+
- dinov2
|
| 10 |
+
- feature-extraction
|
| 11 |
+
- foundation-model
|
| 12 |
+
library_name: timm
|
| 13 |
+
datasets:
|
| 14 |
+
- Elsafty
|
| 15 |
+
- Chula
|
| 16 |
+
- DSE
|
| 17 |
+
pipeline_tag: feature-extraction
|
| 18 |
+
model-index:
|
| 19 |
+
- name: RedDino-small
|
| 20 |
+
results:
|
| 21 |
+
- task:
|
| 22 |
+
type: image-classification
|
| 23 |
+
name: RBC Shape Classification
|
| 24 |
+
dataset:
|
| 25 |
+
name: Elsafty
|
| 26 |
+
type: Classification
|
| 27 |
+
metrics:
|
| 28 |
+
- type: Weighted F1
|
| 29 |
+
value: 86.0
|
| 30 |
+
- type: Balanced Accuracy
|
| 31 |
+
value: 87.2
|
| 32 |
+
- type: Accuracy
|
| 33 |
+
value: 86.2
|
| 34 |
+
- task:
|
| 35 |
+
type: image-classification
|
| 36 |
+
name: RBC Shape Classification
|
| 37 |
+
dataset:
|
| 38 |
+
name: Chula
|
| 39 |
+
type: Classification
|
| 40 |
+
metrics:
|
| 41 |
+
- type: Weighted F1
|
| 42 |
+
value: 84.3
|
| 43 |
+
- type: Balanced Accuracy
|
| 44 |
+
value: 78.5
|
| 45 |
+
- type: Accuracy
|
| 46 |
+
value: 84.4
|
| 47 |
+
- task:
|
| 48 |
+
type: image-classification
|
| 49 |
+
name: RBC Shape Classification
|
| 50 |
+
dataset:
|
| 51 |
+
name: DSE
|
| 52 |
+
type: Classification
|
| 53 |
+
metrics:
|
| 54 |
+
- type: Weighted F1
|
| 55 |
+
value: 84.9
|
| 56 |
+
- type: Balanced Accuracy
|
| 57 |
+
value: 56.5
|
| 58 |
+
- type: Accuracy
|
| 59 |
+
value: 84.9
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
# RedDino-small
|
| 63 |
+
|
| 64 |
+
**RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
|
| 65 |
+
This variant is the compact model in the family, delivering strong performance with lighter computational cost.
|
| 66 |
+
|
| 67 |
+
It leverages a tailored version of the **DINOv2** framework, trained on a meticulously curated dataset of RBC images from diverse acquisition modalities and sources.
|
| 68 |
+
The model excels at extracting robust features for downstream hematology tasks such as **shape classification**, **morphological subtype recognition**, and **batch-effect–robust analysis**.
|
| 69 |
+
|
| 70 |
+
> 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
|
| 71 |
+
> 🏥 University of Cagliari & Helmholtz Munich
|
| 72 |
+
> 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
|
| 73 |
+
|
| 74 |
+
---
|
| 75 |
+
|
| 76 |
+
## Model Details
|
| 77 |
+
|
| 78 |
+
- **Architecture:** ViT-small, patch size 16 (`s16`)
|
| 79 |
+
- **SSL framework:** DINOv2 (customized for RBC morphology)
|
| 80 |
+
- **Pretraining dataset:** Curated RBC images from 18 datasets (multiple modalities and sources)
|
| 81 |
+
- **Embedding size:** 384
|
| 82 |
+
- **Intended use:** RBC morphology classification, feature extraction, batch-effect–robust analysis
|
| 83 |
+
|
| 84 |
+
Notes:
|
| 85 |
+
- Trained with RBC-specific augmentations and DINOv2 customizations (e.g., removal of KoLeo regularizer; Sinkhorn-Knopp centering).
|
| 86 |
+
- Optimized using smear patches rather than only single-cell crops to improve generalization across sources.
|
| 87 |
+
|
| 88 |
+
## Example Usage
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
from PIL import Image
|
| 92 |
+
from torchvision import transforms
|
| 93 |
+
import timm
|
| 94 |
+
import torch
|
| 95 |
+
|
| 96 |
+
# Load model from Hugging Face Hub
|
| 97 |
+
model = timm.create_model("hf_hub:Snarcy/RedDino-small", pretrained=True)
|
| 98 |
+
model.eval()
|
| 99 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 100 |
+
model.to(device)
|
| 101 |
+
|
| 102 |
+
# Load and preprocess image
|
| 103 |
+
image = Image.open("path/to/rbc_image.jpg").convert("RGB")
|
| 104 |
+
transform = transforms.Compose([
|
| 105 |
+
transforms.Resize((224, 224)),
|
| 106 |
+
transforms.ToTensor(),
|
| 107 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 108 |
+
std=[0.229, 0.224, 0.225]),
|
| 109 |
+
])
|
| 110 |
+
input_tensor = transform(image).unsqueeze(0).to(device)
|
| 111 |
+
|
| 112 |
+
# Extract features
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
embedding = model(input_tensor)
|
| 115 |
+
```
|
| 116 |
+
## 📝 Citation
|
| 117 |
+
|
| 118 |
+
If you use this model, please cite the following paper:
|
| 119 |
+
|
| 120 |
+
**RedDino: A foundation model for red blood cell analysis**
|
| 121 |
+
Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Carsten Marr — 2025
|
| 122 |
+
Preprint: arXiv:2508.08180. https://arxiv.org/abs/2508.08180
|
| 123 |
+
|
| 124 |
+
```bibtex
|
| 125 |
+
@misc{zedda2025reddinofoundationmodelred,
|
| 126 |
+
title={RedDino: A foundation model for red blood cell analysis},
|
| 127 |
+
author={Luca Zedda and Andrea Loddo and Cecilia Di Ruberto and Carsten Marr},
|
| 128 |
+
year={2025},
|
| 129 |
+
eprint={2508.08180},
|
| 130 |
+
archivePrefix={arXiv},
|
| 131 |
+
primaryClass={cs.CV},
|
| 132 |
+
url={https://arxiv.org/abs/2508.08180},
|
| 133 |
+
}
|
| 134 |
+
```
|