--- library_name: transformers license: apache-2.0 base_model: yigagilbert/t5_efficient_small_language_ID tags: - generated_from_trainer datasets: - generator metrics: - accuracy - precision - recall - f1 model-index: - name: t5_small_language_Classification results: - task: type: text-classification name: Text Classification dataset: name: generator type: generator config: default split: train args: default metrics: - type: accuracy value: 0.658879605381663 name: Accuracy - type: precision value: 0.6928469419086497 name: Precision - type: recall value: 0.658879605381663 name: Recall - type: f1 value: 0.6286369104782076 name: F1 --- # t5_small_language_Classification This model is a fine-tuned version of [yigagilbert/t5_efficient_small_language_ID](https://huggingface.co/yigagilbert/t5_efficient_small_language_ID) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.6482 - Accuracy: 0.6589 - Precision: 0.6928 - Recall: 0.6589 - F1: 0.6286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 1000 - training_steps: 60000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6453 | 0.0083 | 500 | 1.7792 | 0.5575 | 0.6272 | 0.5575 | 0.5283 | | 0.3701 | 0.0167 | 1000 | 2.8566 | 0.4925 | 0.6309 | 0.4925 | 0.4427 | | 0.3602 | 0.025 | 1500 | 3.4108 | 0.4331 | 0.6188 | 0.4331 | 0.3903 | | 0.3573 | 0.0333 | 2000 | 1.9821 | 0.5855 | 0.6303 | 0.5855 | 0.5419 | | 0.4229 | 0.0417 | 2500 | 1.9248 | 0.6071 | 0.6712 | 0.6071 | 0.5731 | | 0.2156 | 0.05 | 3000 | 2.6673 | 0.5217 | 0.6906 | 0.5217 | 0.4851 | | 0.3752 | 0.0583 | 3500 | 1.9381 | 0.5984 | 0.6682 | 0.5984 | 0.5619 | | 0.4996 | 0.0667 | 4000 | 1.5622 | 0.6266 | 0.6757 | 0.6266 | 0.6022 | | 0.2773 | 0.075 | 4500 | 1.8355 | 0.6299 | 0.6892 | 0.6299 | 0.5872 | | 0.2815 | 0.0833 | 5000 | 1.7752 | 0.6423 | 0.6905 | 0.6423 | 0.6034 | | 0.2525 | 0.0917 | 5500 | 1.6552 | 0.6450 | 0.6879 | 0.6450 | 0.6082 | | 0.2271 | 0.1 | 6000 | 1.6523 | 0.6575 | 0.6916 | 0.6575 | 0.6278 | | 0.3591 | 0.1083 | 6500 | 1.7169 | 0.6542 | 0.6985 | 0.6542 | 0.6238 | | 0.2659 | 0.1167 | 7000 | 1.7209 | 0.6439 | 0.7090 | 0.6439 | 0.6180 | | 0.2337 | 0.125 | 7500 | 1.7631 | 0.6531 | 0.7019 | 0.6531 | 0.6158 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.9.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1