Update README.md
Browse files
README.md
CHANGED
|
@@ -13,8 +13,10 @@ tags:
|
|
| 13 |
- mindcraft
|
| 14 |
---
|
| 15 |
|
| 16 |
-
# 🧠 Andy‑4
|
| 17 |
|
|
|
|
|
|
|
| 18 |
**Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
|
| 19 |
|
| 20 |
> ⚠️ **Certification:**
|
|
@@ -28,9 +30,9 @@ tags:
|
|
| 28 |
- **Training Hardware:** 1 × NVIDIA RTX 3090
|
| 29 |
- **Duration:** ~3 weeks total
|
| 30 |
- **Data Volumes:**
|
| 31 |
-
- **Messages:** 179
|
| 32 |
-
- **Tokens:** 425
|
| 33 |
-
- **Conversations:** 62
|
| 34 |
|
| 35 |
- **Base Architecture:** Llama 3.1 8B
|
| 36 |
- **License:** [Andy 1.1 License](LICENSE)
|
|
@@ -43,14 +45,17 @@ tags:
|
|
| 43 |
1. **Andy‑4‑base‑1** dataset
|
| 44 |
- **Epochs:** 2
|
| 45 |
- **Learning Rate:** 7e-5
|
|
|
|
| 46 |
|
| 47 |
2. **Andy‑4‑base‑2** dataset
|
| 48 |
- **Epochs:** 4
|
| 49 |
- **Learning Rate:** 3e-7
|
|
|
|
| 50 |
|
| 51 |
3. **Fine‑tune (FT) dataset**
|
| 52 |
- **Epochs:** 2.5
|
| 53 |
- **Learning Rate:** 2e-5
|
|
|
|
| 54 |
|
| 55 |
- **Optimizer:** AdamW_8bit with cosine decay
|
| 56 |
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
|
|
@@ -60,11 +65,7 @@ tags:
|
|
| 60 |
|
| 61 |
## 🚀 Installation
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
1. On the HF model page, click **Use this model → Ollama**.
|
| 66 |
-
2. Choose your quantization (see table).
|
| 67 |
-
3. Copy and run the provided `ollama run` command.
|
| 68 |
|
| 69 |
| Quantization | VRAM Required |
|
| 70 |
|--------------|---------------|
|
|
@@ -74,9 +75,12 @@ tags:
|
|
| 74 |
| Q3_K_M | 6 GB (low) |
|
| 75 |
| Q2_K | 4–6 GB (ultra)|
|
| 76 |
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
### 2. Manual Download & Modelfile
|
| 82 |
|
|
@@ -84,15 +88,6 @@ If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/c
|
|
| 84 |
- From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
|
| 85 |
- Download the provided `Modelfile`.
|
| 86 |
|
| 87 |
-
Follow this table to choose your quantization, this is for a 8192 context window, the default, as well as a non-quantized context window.
|
| 88 |
-
|
| 89 |
-
| Quantization | VRAM Required |
|
| 90 |
-
|--------------|---------------|
|
| 91 |
-
| F16 | 16 GB+ |
|
| 92 |
-
| Q5_K_M | 8 GB+ |
|
| 93 |
-
| Q4_K_M | 6–8 GB |
|
| 94 |
-
| Q3_K_M | 6 GB (low) |
|
| 95 |
-
| Q2_K | 4–6 GB (ultra)|
|
| 96 |
|
| 97 |
2. **Edit**
|
| 98 |
|
|
@@ -122,6 +117,9 @@ This registers the **Andy‑4** model locally.
|
|
| 122 |
|
| 123 |
---
|
| 124 |
|
|
|
|
|
|
|
|
|
|
| 125 |
## 🔧 Context‑Window Quantization
|
| 126 |
|
| 127 |
To lower VRAM use for context windows:
|
|
|
|
| 13 |
- mindcraft
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# 🧠 Andy‑4 ⛏️
|
| 17 |
|
| 18 |
+
|
| 19 |
+

|
| 20 |
**Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
|
| 21 |
|
| 22 |
> ⚠️ **Certification:**
|
|
|
|
| 30 |
- **Training Hardware:** 1 × NVIDIA RTX 3090
|
| 31 |
- **Duration:** ~3 weeks total
|
| 32 |
- **Data Volumes:**
|
| 33 |
+
- **Messages:** 179,384
|
| 34 |
+
- **Tokens:** 425,535,198
|
| 35 |
+
- **Conversations:** 62,149
|
| 36 |
|
| 37 |
- **Base Architecture:** Llama 3.1 8B
|
| 38 |
- **License:** [Andy 1.1 License](LICENSE)
|
|
|
|
| 45 |
1. **Andy‑4‑base‑1** dataset
|
| 46 |
- **Epochs:** 2
|
| 47 |
- **Learning Rate:** 7e-5
|
| 48 |
+
- **Dataset Size:** 47.4k
|
| 49 |
|
| 50 |
2. **Andy‑4‑base‑2** dataset
|
| 51 |
- **Epochs:** 4
|
| 52 |
- **Learning Rate:** 3e-7
|
| 53 |
+
- **Dataset Size:** 48.9k
|
| 54 |
|
| 55 |
3. **Fine‑tune (FT) dataset**
|
| 56 |
- **Epochs:** 2.5
|
| 57 |
- **Learning Rate:** 2e-5
|
| 58 |
+
- **Dataset Size:** 4.12k
|
| 59 |
|
| 60 |
- **Optimizer:** AdamW_8bit with cosine decay
|
| 61 |
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
|
|
|
|
| 65 |
|
| 66 |
## 🚀 Installation
|
| 67 |
|
| 68 |
+
First, you need to choose your quantization, this chart is with the base of `8192` set as the context window
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
| Quantization | VRAM Required |
|
| 71 |
|--------------|---------------|
|
|
|
|
| 75 |
| Q3_K_M | 6 GB (low) |
|
| 76 |
| Q2_K | 4–6 GB (ultra)|
|
| 77 |
|
| 78 |
+
### 1. Installation directly on Ollama *(Fastest and easiest)*
|
| 79 |
|
| 80 |
+
1. Visit [Andy-4 on Ollama](https://ollama.com/Sweaterdog/Andy-4)
|
| 81 |
+
2. Copy the command after choosing model type / quantization
|
| 82 |
+
3. Run the command in the terminal
|
| 83 |
+
4. Set the profile's model to be what you installed, such as `ollama/sweaterdog/andy-4:latest`
|
| 84 |
|
| 85 |
### 2. Manual Download & Modelfile
|
| 86 |
|
|
|
|
| 88 |
- From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
|
| 89 |
- Download the provided `Modelfile`.
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
2. **Edit**
|
| 93 |
|
|
|
|
| 117 |
|
| 118 |
---
|
| 119 |
|
| 120 |
+
If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/channels/1303399789995626667/1347027684768878644/1347027684768878644) for free cloud setups.
|
| 121 |
+
|
| 122 |
+
|
| 123 |
## 🔧 Context‑Window Quantization
|
| 124 |
|
| 125 |
To lower VRAM use for context windows:
|