Tanaybh commited on
Commit
5d19933
·
verified ·
1 Parent(s): a2f1fd6

Add comprehensive README

Browse files
Files changed (1) hide show
  1. README.md +120 -184
README.md CHANGED
@@ -1,207 +1,143 @@
1
  ---
 
2
  base_model: microsoft/DialoGPT-medium
3
- library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:microsoft/DialoGPT-medium
7
  - lora
8
- - transformers
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
 
 
16
 
17
  ## Model Details
18
 
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
  ## Training Details
82
 
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
 
188
- ## Glossary [optional]
 
 
 
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
 
192
- [More Information Needed]
 
 
 
193
 
194
- ## More Information [optional]
195
 
196
- [More Information Needed]
 
 
 
197
 
198
- ## Model Card Authors [optional]
199
 
200
- [More Information Needed]
201
 
202
- ## Model Card Contact
 
 
 
 
 
 
 
203
 
204
- [More Information Needed]
205
- ### Framework versions
206
 
207
- - PEFT 0.17.1
 
1
  ---
2
+ license: mit
3
  base_model: microsoft/DialoGPT-medium
 
 
4
  tags:
5
+ - peft
6
  - lora
7
+ - conversational-ai
8
+ - instruction-following
9
+ - fine-tuned
10
+ - alpaca-dataset
11
+ language:
12
+ - en
13
+ library_name: peft
14
  ---
15
 
16
+ # DialoGPT-Medium LoRA Fine-tuned on Alpaca Dataset
 
 
 
17
 
18
+ This model is a LoRA (Low-Rank Adaptation) fine-tuned version of `microsoft/DialoGPT-medium` trained on a subset of the Alpaca instruction-following dataset.
19
 
20
  ## Model Details
21
 
22
+ - **Base Model**: microsoft/DialoGPT-medium (345M parameters)
23
+ - **Training Method**: LoRA (Low-Rank Adaptation)
24
+ - **LoRA Configuration**:
25
+ - Rank (r): 32
26
+ - Alpha: 64
27
+ - Dropout: 0.1
28
+ - Target modules: c_attn, c_proj, c_fc
29
+ - **Dataset**: Stanford Alpaca (1000 samples)
30
+ - **Training Split**: 800 train, 200 validation
31
+ - **Epochs**: 3
32
+ - **Final Training Loss**: 3.45
33
+
34
+ ## Training Setup
35
+
36
+ - **Hardware**: Apple Silicon (MPS)
37
+ - **Precision**: FP32 for numerical stability
38
+ - **Batch Size**: 4 per device
39
+ - **Gradient Accumulation**: 2 steps
40
+ - **Learning Rate**: 1e-4
41
+ - **Scheduler**: Cosine
42
+
43
+ ## Performance
44
+
45
+ This model demonstrates improved instruction-following capabilities compared to the base DialoGPT-medium model, with responses that:
46
+ - Follow instruction format better
47
+ - Provide more detailed explanations
48
+ - Handle diverse question types (AI/ML, technical concepts, etc.)
49
+
50
+ ## Usage
51
+
52
+ ### Loading the Model
53
+
54
+ ```python
55
+ from transformers import AutoTokenizer, AutoModelForCausalLM
56
+ from peft import PeftModel
57
+
58
+ # Load base model and tokenizer
59
+ base_model_name = "microsoft/DialoGPT-medium"
60
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
61
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
62
+
63
+ # Load LoRA adapter
64
+ model = PeftModel.from_pretrained(base_model, "Tanaybh/dialogpt-medium-qlora-alpaca")
65
+
66
+ # Add padding token
67
+ if tokenizer.pad_token is None:
68
+ tokenizer.pad_token = tokenizer.eos_token
69
+ ```
70
+
71
+ ### Inference
72
+
73
+ ```python
74
+ def generate_response(prompt):
75
+ input_text = f"Instruction: {prompt}\nResponse:"
76
+ inputs = tokenizer.encode(input_text, return_tensors="pt")
77
+
78
+ with torch.no_grad():
79
+ outputs = model.generate(
80
+ inputs,
81
+ max_new_tokens=80,
82
+ temperature=0.7,
83
+ do_sample=True,
84
+ pad_token_id=tokenizer.eos_token_id,
85
+ top_p=0.8,
86
+ repetition_penalty=1.2
87
+ )
88
+
89
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
90
+ return response.split("Response:")[-1].strip()
91
+
92
+ # Example usage
93
+ response = generate_response("What is machine learning?")
94
+ print(response)
95
+ ```
96
+
97
+ ## Example Outputs
98
+
99
+ **Q: What is artificial intelligence?**
100
+ A: It's a computer program designed to detect patterns in images and predict them based on what they are. It can be used for machine learning, image recognition, or machine translation, among other things.
101
+
102
+ **Q: What is the difference between AI and ML?**
103
+ A: AI is a programming language for AI systems. ML is an algorithm for ML systems, like Deep Learning, Deep Recognition, etc. It uses the same algorithms as other algorithms, but is used in more advanced applications.
104
 
105
  ## Training Details
106
 
107
+ This model was fine-tuned using a Mac-optimized approach that provides QLoRA-like benefits without requiring CUDA-specific quantization libraries:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ - Used higher LoRA rank (32 vs typical 8-16)
110
+ - Targeted more modules for broader adaptation
111
+ - Leveraged Apple Silicon GPU (MPS) for efficient training
112
+ - Applied FP32 precision for numerical stability
113
 
114
+ ## Limitations
115
 
116
+ - Responses may occasionally be verbose or repetitive
117
+ - Performance varies by question complexity
118
+ - Optimized for instructional/educational content
119
+ - May require generation parameter tuning for best results
120
 
121
+ ## Technical Notes
122
 
123
+ - This is a LoRA adapter, not a full model
124
+ - Requires the base DialoGPT-medium model to function
125
+ - Trained on Mac hardware using MPS acceleration
126
+ - Compatible with standard PEFT/transformers libraries
127
 
128
+ ## Citation
129
 
130
+ If you use this model, please cite:
131
 
132
+ ```bibtex
133
+ @misc{dialogpt-medium-qlora-alpaca,
134
+ author = {Tanay Bhardwaj},
135
+ title = {DialoGPT-Medium LoRA Fine-tuned on Alpaca Dataset},
136
+ year = {2025},
137
+ url = {https://huggingface.co/Tanaybh/dialogpt-medium-qlora-alpaca}
138
+ }
139
+ ```
140
 
141
+ ## License
 
142
 
143
+ MIT License - see base model license for additional terms.