Commit
·
fa8e2c2
1
Parent(s):
18905a7
update model card (#1)
Browse files- update model card (0533d9fa2852caae9ed823f04e5a1b06ab216f06)
- fix title (3e2bf94cf2b37a81820208b561dc2f415d816d1f)
Co-authored-by: Will Berman <[email protected]>
- README.md +264 -1
- images/seg_image_out.png +0 -0
- images/seg_input.jpeg +0 -0
- images/segment_image.png +0 -0
README.md
CHANGED
|
@@ -1,3 +1,266 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: runwayml/stable-diffusion-v1-5
|
| 4 |
+
tags:
|
| 5 |
+
- art
|
| 6 |
+
- t2i-adapter
|
| 7 |
+
- controlnet
|
| 8 |
+
- stable-diffusion
|
| 9 |
+
- image-to-image
|
| 10 |
---
|
| 11 |
+
|
| 12 |
+
# T2I Adapter - Segment
|
| 13 |
+
|
| 14 |
+
T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint.
|
| 15 |
+
|
| 16 |
+
This checkpoint provides conditioning on semantic segmentation for the stable diffusion 1.4 checkpoint.
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
- **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
|
| 20 |
+
- **Model type:** Diffusion-based text-to-image generation model
|
| 21 |
+
- **Language(s):** English
|
| 22 |
+
- **License:** Apache 2.0
|
| 23 |
+
- **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453).
|
| 24 |
+
- **Cite as:**
|
| 25 |
+
|
| 26 |
+
@misc{
|
| 27 |
+
title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models},
|
| 28 |
+
author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie},
|
| 29 |
+
year={2023},
|
| 30 |
+
eprint={2302.08453},
|
| 31 |
+
archivePrefix={arXiv},
|
| 32 |
+
primaryClass={cs.CV}
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
### Checkpoints
|
| 36 |
+
|
| 37 |
+
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
| 38 |
+
|---|---|---|---|
|
| 39 |
+
|[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | A image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>|
|
| 40 |
+
|[TencentARC/t2iadapter_canny_sd14v1](https://huggingface.co/TencentARC/t2iadapter_canny_sd14v1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"/></a>|
|
| 41 |
+
|[TencentARC/t2iadapter_sketch_sd14v1](https://huggingface.co/TencentARC/t2iadapter_sketch_sd14v1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"/></a>|
|
| 42 |
+
|[TencentARC/t2iadapter_depth_sd14v1](https://huggingface.co/TencentARC/t2iadapter_depth_sd14v1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"/></a>|
|
| 43 |
+
|[TencentARC/t2iadapter_openpose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_openpose_sd14v1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"/></a>|
|
| 44 |
+
|[TencentARC/t2iadapter_keypose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_keypose_sd14v1)<br/> *Trained with mmpose skeleton image* | A [mmpose skeleton](https://github.com/open-mmlab/mmpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"/></a>|
|
| 45 |
+
|[TencentARC/t2iadapter_seg_sd14v1](https://huggingface.co/TencentARC/t2iadapter_seg_sd14v1)<br/>*Trained with semantic segmentation* | An [custom](https://github.com/TencentARC/T2I-Adapter/discussions/25) segmentation protocol image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"/></a> |
|
| 46 |
+
|[TencentARC/t2iadapter_canny_sd15v2](https://huggingface.co/TencentARC/t2iadapter_canny_sd15v2)||
|
| 47 |
+
|[TencentARC/t2iadapter_depth_sd15v2](https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2)||
|
| 48 |
+
|[TencentARC/t2iadapter_sketch_sd15v2](https://huggingface.co/TencentARC/t2iadapter_sketch_sd15v2)||
|
| 49 |
+
|[TencentARC/t2iadapter_zoedepth_sd15v1](https://huggingface.co/TencentARC/t2iadapter_zoedepth_sd15v1)||
|
| 50 |
+
|
| 51 |
+
## Example
|
| 52 |
+
|
| 53 |
+
1. Dependencies
|
| 54 |
+
|
| 55 |
+
```sh
|
| 56 |
+
pip install diffusers transformers
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
2. Run code:
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
import torch
|
| 63 |
+
from PIL import Image
|
| 64 |
+
import numpy as np
|
| 65 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 66 |
+
|
| 67 |
+
from diffusers import (
|
| 68 |
+
T2IAdapter,
|
| 69 |
+
StableDiffusionAdapterPipeline
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
ada_palette = np.asarray([
|
| 73 |
+
[0, 0, 0],
|
| 74 |
+
[120, 120, 120],
|
| 75 |
+
[180, 120, 120],
|
| 76 |
+
[6, 230, 230],
|
| 77 |
+
[80, 50, 50],
|
| 78 |
+
[4, 200, 3],
|
| 79 |
+
[120, 120, 80],
|
| 80 |
+
[140, 140, 140],
|
| 81 |
+
[204, 5, 255],
|
| 82 |
+
[230, 230, 230],
|
| 83 |
+
[4, 250, 7],
|
| 84 |
+
[224, 5, 255],
|
| 85 |
+
[235, 255, 7],
|
| 86 |
+
[150, 5, 61],
|
| 87 |
+
[120, 120, 70],
|
| 88 |
+
[8, 255, 51],
|
| 89 |
+
[255, 6, 82],
|
| 90 |
+
[143, 255, 140],
|
| 91 |
+
[204, 255, 4],
|
| 92 |
+
[255, 51, 7],
|
| 93 |
+
[204, 70, 3],
|
| 94 |
+
[0, 102, 200],
|
| 95 |
+
[61, 230, 250],
|
| 96 |
+
[255, 6, 51],
|
| 97 |
+
[11, 102, 255],
|
| 98 |
+
[255, 7, 71],
|
| 99 |
+
[255, 9, 224],
|
| 100 |
+
[9, 7, 230],
|
| 101 |
+
[220, 220, 220],
|
| 102 |
+
[255, 9, 92],
|
| 103 |
+
[112, 9, 255],
|
| 104 |
+
[8, 255, 214],
|
| 105 |
+
[7, 255, 224],
|
| 106 |
+
[255, 184, 6],
|
| 107 |
+
[10, 255, 71],
|
| 108 |
+
[255, 41, 10],
|
| 109 |
+
[7, 255, 255],
|
| 110 |
+
[224, 255, 8],
|
| 111 |
+
[102, 8, 255],
|
| 112 |
+
[255, 61, 6],
|
| 113 |
+
[255, 194, 7],
|
| 114 |
+
[255, 122, 8],
|
| 115 |
+
[0, 255, 20],
|
| 116 |
+
[255, 8, 41],
|
| 117 |
+
[255, 5, 153],
|
| 118 |
+
[6, 51, 255],
|
| 119 |
+
[235, 12, 255],
|
| 120 |
+
[160, 150, 20],
|
| 121 |
+
[0, 163, 255],
|
| 122 |
+
[140, 140, 140],
|
| 123 |
+
[250, 10, 15],
|
| 124 |
+
[20, 255, 0],
|
| 125 |
+
[31, 255, 0],
|
| 126 |
+
[255, 31, 0],
|
| 127 |
+
[255, 224, 0],
|
| 128 |
+
[153, 255, 0],
|
| 129 |
+
[0, 0, 255],
|
| 130 |
+
[255, 71, 0],
|
| 131 |
+
[0, 235, 255],
|
| 132 |
+
[0, 173, 255],
|
| 133 |
+
[31, 0, 255],
|
| 134 |
+
[11, 200, 200],
|
| 135 |
+
[255, 82, 0],
|
| 136 |
+
[0, 255, 245],
|
| 137 |
+
[0, 61, 255],
|
| 138 |
+
[0, 255, 112],
|
| 139 |
+
[0, 255, 133],
|
| 140 |
+
[255, 0, 0],
|
| 141 |
+
[255, 163, 0],
|
| 142 |
+
[255, 102, 0],
|
| 143 |
+
[194, 255, 0],
|
| 144 |
+
[0, 143, 255],
|
| 145 |
+
[51, 255, 0],
|
| 146 |
+
[0, 82, 255],
|
| 147 |
+
[0, 255, 41],
|
| 148 |
+
[0, 255, 173],
|
| 149 |
+
[10, 0, 255],
|
| 150 |
+
[173, 255, 0],
|
| 151 |
+
[0, 255, 153],
|
| 152 |
+
[255, 92, 0],
|
| 153 |
+
[255, 0, 255],
|
| 154 |
+
[255, 0, 245],
|
| 155 |
+
[255, 0, 102],
|
| 156 |
+
[255, 173, 0],
|
| 157 |
+
[255, 0, 20],
|
| 158 |
+
[255, 184, 184],
|
| 159 |
+
[0, 31, 255],
|
| 160 |
+
[0, 255, 61],
|
| 161 |
+
[0, 71, 255],
|
| 162 |
+
[255, 0, 204],
|
| 163 |
+
[0, 255, 194],
|
| 164 |
+
[0, 255, 82],
|
| 165 |
+
[0, 10, 255],
|
| 166 |
+
[0, 112, 255],
|
| 167 |
+
[51, 0, 255],
|
| 168 |
+
[0, 194, 255],
|
| 169 |
+
[0, 122, 255],
|
| 170 |
+
[0, 255, 163],
|
| 171 |
+
[255, 153, 0],
|
| 172 |
+
[0, 255, 10],
|
| 173 |
+
[255, 112, 0],
|
| 174 |
+
[143, 255, 0],
|
| 175 |
+
[82, 0, 255],
|
| 176 |
+
[163, 255, 0],
|
| 177 |
+
[255, 235, 0],
|
| 178 |
+
[8, 184, 170],
|
| 179 |
+
[133, 0, 255],
|
| 180 |
+
[0, 255, 92],
|
| 181 |
+
[184, 0, 255],
|
| 182 |
+
[255, 0, 31],
|
| 183 |
+
[0, 184, 255],
|
| 184 |
+
[0, 214, 255],
|
| 185 |
+
[255, 0, 112],
|
| 186 |
+
[92, 255, 0],
|
| 187 |
+
[0, 224, 255],
|
| 188 |
+
[112, 224, 255],
|
| 189 |
+
[70, 184, 160],
|
| 190 |
+
[163, 0, 255],
|
| 191 |
+
[153, 0, 255],
|
| 192 |
+
[71, 255, 0],
|
| 193 |
+
[255, 0, 163],
|
| 194 |
+
[255, 204, 0],
|
| 195 |
+
[255, 0, 143],
|
| 196 |
+
[0, 255, 235],
|
| 197 |
+
[133, 255, 0],
|
| 198 |
+
[255, 0, 235],
|
| 199 |
+
[245, 0, 255],
|
| 200 |
+
[255, 0, 122],
|
| 201 |
+
[255, 245, 0],
|
| 202 |
+
[10, 190, 212],
|
| 203 |
+
[214, 255, 0],
|
| 204 |
+
[0, 204, 255],
|
| 205 |
+
[20, 0, 255],
|
| 206 |
+
[255, 255, 0],
|
| 207 |
+
[0, 153, 255],
|
| 208 |
+
[0, 41, 255],
|
| 209 |
+
[0, 255, 204],
|
| 210 |
+
[41, 0, 255],
|
| 211 |
+
[41, 255, 0],
|
| 212 |
+
[173, 0, 255],
|
| 213 |
+
[0, 245, 255],
|
| 214 |
+
[71, 0, 255],
|
| 215 |
+
[122, 0, 255],
|
| 216 |
+
[0, 255, 184],
|
| 217 |
+
[0, 92, 255],
|
| 218 |
+
[184, 255, 0],
|
| 219 |
+
[0, 133, 255],
|
| 220 |
+
[255, 214, 0],
|
| 221 |
+
[25, 194, 194],
|
| 222 |
+
[102, 255, 0],
|
| 223 |
+
[92, 0, 255],
|
| 224 |
+
])
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 228 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 229 |
+
|
| 230 |
+
checkpoint = "lllyasviel/control_v11p_sd15_seg"
|
| 231 |
+
|
| 232 |
+
image = Image.open('./images/seg_input.jpeg')
|
| 233 |
+
|
| 234 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 235 |
+
with torch.no_grad():
|
| 236 |
+
outputs = image_segmentor(pixel_values)
|
| 237 |
+
|
| 238 |
+
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 239 |
+
|
| 240 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 241 |
+
|
| 242 |
+
for label, color in enumerate(ada_palette):
|
| 243 |
+
color_seg[seg == label, :] = color
|
| 244 |
+
|
| 245 |
+
color_seg = color_seg.astype(np.uint8)
|
| 246 |
+
control_image = Image.fromarray(color_seg)
|
| 247 |
+
|
| 248 |
+
control_image.save("./images/segment_image.png")
|
| 249 |
+
|
| 250 |
+
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1", torch_dtype=torch.float16)
|
| 251 |
+
pipe = StableDiffusionAdapterPipeline.from_pretrained(
|
| 252 |
+
"CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16"
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
pipe.to('cuda')
|
| 256 |
+
|
| 257 |
+
generator = torch.Generator().manual_seed(0)
|
| 258 |
+
|
| 259 |
+
sketch_image_out = pipe(prompt="motorcycles driving", image=control_image, generator=generator).images[0]
|
| 260 |
+
|
| 261 |
+
sketch_image_out.save('./images/seg_image_out.png')
|
| 262 |
+
```
|
| 263 |
+
|
| 264 |
+

|
| 265 |
+

|
| 266 |
+

|
images/seg_image_out.png
ADDED
|
images/seg_input.jpeg
ADDED
|
images/segment_image.png
ADDED
|