Commit
·
fb92bbb
1
Parent(s):
e3c4ffa
update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
datasets:
|
| 5 |
+
- sroie
|
| 6 |
+
metrics:
|
| 7 |
+
- precision
|
| 8 |
+
- recall
|
| 9 |
+
- f1
|
| 10 |
+
- accuracy
|
| 11 |
+
model-index:
|
| 12 |
+
- name: layoutlmv3-finetuned-sroie
|
| 13 |
+
results:
|
| 14 |
+
- task:
|
| 15 |
+
name: Token Classification
|
| 16 |
+
type: token-classification
|
| 17 |
+
dataset:
|
| 18 |
+
name: sroie
|
| 19 |
+
type: sroie
|
| 20 |
+
args: sroie
|
| 21 |
+
metrics:
|
| 22 |
+
- name: Precision
|
| 23 |
+
type: precision
|
| 24 |
+
value: 0.9362154500354358
|
| 25 |
+
- name: Recall
|
| 26 |
+
type: recall
|
| 27 |
+
value: 0.9517291066282421
|
| 28 |
+
- name: F1
|
| 29 |
+
type: f1
|
| 30 |
+
value: 0.9439085387638442
|
| 31 |
+
- name: Accuracy
|
| 32 |
+
type: accuracy
|
| 33 |
+
value: 0.9951776838044365
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 37 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 38 |
+
|
| 39 |
+
# layoutlmv3-finetuned-sroie
|
| 40 |
+
|
| 41 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
|
| 42 |
+
It achieves the following results on the evaluation set:
|
| 43 |
+
- Loss: 0.0288
|
| 44 |
+
- Precision: 0.9362
|
| 45 |
+
- Recall: 0.9517
|
| 46 |
+
- F1: 0.9439
|
| 47 |
+
- Accuracy: 0.9952
|
| 48 |
+
|
| 49 |
+
## Model description
|
| 50 |
+
|
| 51 |
+
More information needed
|
| 52 |
+
|
| 53 |
+
## Intended uses & limitations
|
| 54 |
+
|
| 55 |
+
More information needed
|
| 56 |
+
|
| 57 |
+
## Training and evaluation data
|
| 58 |
+
|
| 59 |
+
More information needed
|
| 60 |
+
|
| 61 |
+
## Training procedure
|
| 62 |
+
|
| 63 |
+
### Training hyperparameters
|
| 64 |
+
|
| 65 |
+
The following hyperparameters were used during training:
|
| 66 |
+
- learning_rate: 1e-05
|
| 67 |
+
- train_batch_size: 2
|
| 68 |
+
- eval_batch_size: 2
|
| 69 |
+
- seed: 42
|
| 70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 71 |
+
- lr_scheduler_type: linear
|
| 72 |
+
- training_steps: 2000
|
| 73 |
+
|
| 74 |
+
### Training results
|
| 75 |
+
|
| 76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 77 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 78 |
+
| No log | 0.32 | 100 | 0.1063 | 0.6851 | 0.6599 | 0.6723 | 0.9739 |
|
| 79 |
+
| No log | 0.64 | 200 | 0.0583 | 0.7849 | 0.7860 | 0.7855 | 0.9843 |
|
| 80 |
+
| No log | 0.96 | 300 | 0.0475 | 0.8463 | 0.8610 | 0.8536 | 0.9884 |
|
| 81 |
+
| No log | 1.28 | 400 | 0.0437 | 0.8566 | 0.8739 | 0.8652 | 0.9894 |
|
| 82 |
+
| 0.1215 | 1.6 | 500 | 0.0424 | 0.8616 | 0.9063 | 0.8834 | 0.9895 |
|
| 83 |
+
| 0.1215 | 1.92 | 600 | 0.0332 | 0.8702 | 0.9323 | 0.9002 | 0.9924 |
|
| 84 |
+
| 0.1215 | 2.24 | 700 | 0.0318 | 0.8979 | 0.9373 | 0.9172 | 0.9932 |
|
| 85 |
+
| 0.1215 | 2.56 | 800 | 0.0316 | 0.9092 | 0.9445 | 0.9265 | 0.9936 |
|
| 86 |
+
| 0.1215 | 2.88 | 900 | 0.0295 | 0.8982 | 0.9467 | 0.9218 | 0.9937 |
|
| 87 |
+
| 0.0286 | 3.19 | 1000 | 0.0329 | 0.8685 | 0.9517 | 0.9082 | 0.9930 |
|
| 88 |
+
| 0.0286 | 3.51 | 1100 | 0.0289 | 0.9298 | 0.9352 | 0.9325 | 0.9945 |
|
| 89 |
+
| 0.0286 | 3.83 | 1200 | 0.0287 | 0.9202 | 0.9474 | 0.9336 | 0.9946 |
|
| 90 |
+
| 0.0286 | 4.15 | 1300 | 0.0301 | 0.9174 | 0.9524 | 0.9346 | 0.9947 |
|
| 91 |
+
| 0.0286 | 4.47 | 1400 | 0.0268 | 0.9212 | 0.9431 | 0.9320 | 0.9946 |
|
| 92 |
+
| 0.017 | 4.79 | 1500 | 0.0307 | 0.9236 | 0.9488 | 0.9360 | 0.9944 |
|
| 93 |
+
| 0.017 | 5.11 | 1600 | 0.0286 | 0.9335 | 0.9503 | 0.9418 | 0.9951 |
|
| 94 |
+
| 0.017 | 5.43 | 1700 | 0.0287 | 0.9284 | 0.9618 | 0.9448 | 0.9951 |
|
| 95 |
+
| 0.017 | 5.75 | 1800 | 0.0278 | 0.9334 | 0.9496 | 0.9414 | 0.9952 |
|
| 96 |
+
| 0.017 | 6.07 | 1900 | 0.0289 | 0.9337 | 0.9539 | 0.9437 | 0.9952 |
|
| 97 |
+
| 0.0111 | 6.39 | 2000 | 0.0288 | 0.9362 | 0.9517 | 0.9439 | 0.9952 |
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
### Framework versions
|
| 101 |
+
|
| 102 |
+
- Transformers 4.20.0.dev0
|
| 103 |
+
- Pytorch 1.11.0+cu113
|
| 104 |
+
- Datasets 2.2.2
|
| 105 |
+
- Tokenizers 0.12.1
|