Upload 2 files
Browse files
Generate Error Analysis Visualizations/updated_enhanced_error_analysis.py
ADDED
|
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# enhanced_error_analysis.py
|
| 2 |
+
import json
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
from plotly.subplots import make_subplots
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from typing import List, Dict, Any
|
| 7 |
+
|
| 8 |
+
# Error categories with detailed descriptions
|
| 9 |
+
ERROR_CATEGORIES = {
|
| 10 |
+
"multi_step": "Chain-of-thought reasoning failures in multi-step problems",
|
| 11 |
+
"percentage": "Percentage and ratio calculations",
|
| 12 |
+
"logic": "Logical reasoning and problem setup failures",
|
| 13 |
+
"unit_conversion": "Measurement and unit conversion errors"
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
# Define colors for each category
|
| 17 |
+
ERROR_CATEGORY_COLORS = {
|
| 18 |
+
"multi_step": "red",
|
| 19 |
+
"percentage": "blue",
|
| 20 |
+
"logic": "orange",
|
| 21 |
+
"unit_conversion": "purple"
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def refined_classify_error_type(result: Dict[str, Any]) -> str:
|
| 25 |
+
"""
|
| 26 |
+
More precise error classification that distinguishes between error types
|
| 27 |
+
"""
|
| 28 |
+
question = result["question"].lower()
|
| 29 |
+
ground_truth = str(result["ground_truth"]).lower()
|
| 30 |
+
predicted = str(result["predicted_answer"]).lower()
|
| 31 |
+
|
| 32 |
+
# Check for percentage problems
|
| 33 |
+
if any(term in question for term in ['%', 'percent', 'percentage']):
|
| 34 |
+
return "percentage"
|
| 35 |
+
|
| 36 |
+
# Check for unit conversion issues - prioritize this over multi-step
|
| 37 |
+
if any(unit in question for unit in ['pound', 'pounds', 'ounce', 'ounces', 'gallon', 'gallons',
|
| 38 |
+
'mile', 'miles', 'hour', 'hours', 'minute', 'minutes',
|
| 39 |
+
'second', 'seconds', 'dollar', 'dollars', 'cent', 'cents']):
|
| 40 |
+
return "unit_conversion"
|
| 41 |
+
|
| 42 |
+
# Check for multi-step problems (complex wording)
|
| 43 |
+
# Exclude simple arithmetic problems that happen to have "twice", "half", etc.
|
| 44 |
+
multi_step_indicators = [
|
| 45 |
+
len(question.split()) > 30, # Longer questions are more complex
|
| 46 |
+
any(connector in question for connector in ['if', 'then', 'after', 'before', 'when', 'however', 'since']),
|
| 47 |
+
question.count('and') > 3, # More connections indicate complexity
|
| 48 |
+
any(phrase in question for phrase in ['first', 'then', 'next', 'finally', 'after that']),
|
| 49 |
+
any(term in question for term in ['each', 'every', 'per', 'total', 'combined'])
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
# Additional check to exclude simple problems with basic operations
|
| 53 |
+
simple_arithmetic_indicators = [
|
| 54 |
+
question.count('+') > 0,
|
| 55 |
+
question.count('-') > 0,
|
| 56 |
+
question.count('*') > 0,
|
| 57 |
+
question.count('/') > 0,
|
| 58 |
+
question.count('times') > 0,
|
| 59 |
+
question.count('plus') > 0,
|
| 60 |
+
question.count('minus') > 0
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
# Only classify as multi-step if it has multiple complexity indicators
|
| 64 |
+
# but doesn't look like simple arithmetic
|
| 65 |
+
complexity_score = sum(multi_step_indicators)
|
| 66 |
+
if complexity_score >= 3 and sum(simple_arithmetic_indicators) <= 2:
|
| 67 |
+
return "multi_step"
|
| 68 |
+
|
| 69 |
+
# Default to logic if other categories don't fit
|
| 70 |
+
return "logic"
|
| 71 |
+
|
| 72 |
+
def load_results(filename: str = "few_shot_results_errors_only.json") -> List[Dict[str, Any]]:
|
| 73 |
+
"""Load the evaluation results from JSON file"""
|
| 74 |
+
try:
|
| 75 |
+
with open(filename, 'r') as f:
|
| 76 |
+
data = json.load(f)
|
| 77 |
+
|
| 78 |
+
# Handle both formats: full results and error-only results
|
| 79 |
+
if "results" in data:
|
| 80 |
+
results = data.get("results", [])
|
| 81 |
+
# For error-only files, ensure all are marked as incorrect
|
| 82 |
+
for result in results:
|
| 83 |
+
result["is_correct"] = False
|
| 84 |
+
return results
|
| 85 |
+
else:
|
| 86 |
+
# Assume it's a list of results directly
|
| 87 |
+
return data
|
| 88 |
+
|
| 89 |
+
except FileNotFoundError:
|
| 90 |
+
print(f"Error: File {filename} not found.")
|
| 91 |
+
return []
|
| 92 |
+
except json.JSONDecodeError:
|
| 93 |
+
print(f"Error: Invalid JSON format in {filename}.")
|
| 94 |
+
return []
|
| 95 |
+
|
| 96 |
+
def create_comprehensive_visualization(results: List[Dict], num_samples: int):
|
| 97 |
+
"""Create a comprehensive visualization showing all errors with proper categorization"""
|
| 98 |
+
|
| 99 |
+
# Categorize errors
|
| 100 |
+
errors = [r for r in results if not r.get("is_correct", True)]
|
| 101 |
+
error_categories = {category: [] for category in ERROR_CATEGORIES}
|
| 102 |
+
|
| 103 |
+
for error in errors:
|
| 104 |
+
category = refined_classify_error_type(error)
|
| 105 |
+
error_categories[category].append(error)
|
| 106 |
+
|
| 107 |
+
# Prepare data for visualization
|
| 108 |
+
categories = list(error_categories.keys())
|
| 109 |
+
counts = [len(error_categories[cat]) for cat in categories]
|
| 110 |
+
percentages = [count/len(errors)*100 if errors else 0 for count in counts]
|
| 111 |
+
|
| 112 |
+
# Create detailed error list for scatter plot
|
| 113 |
+
error_details = []
|
| 114 |
+
for category, errors_list in error_categories.items():
|
| 115 |
+
for error in errors_list:
|
| 116 |
+
error_details.append({
|
| 117 |
+
"sample_index": error.get("index", 0),
|
| 118 |
+
"category": category,
|
| 119 |
+
"ground_truth": error["ground_truth"],
|
| 120 |
+
"predicted": error["predicted_answer"],
|
| 121 |
+
"question_preview": error["question"][:50] + "..." if len(error["question"]) > 50 else error["question"]
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
error_df = pd.DataFrame(error_details)
|
| 125 |
+
|
| 126 |
+
# Create visualization
|
| 127 |
+
fig = make_subplots(
|
| 128 |
+
rows=2, cols=2,
|
| 129 |
+
subplot_titles=(
|
| 130 |
+
'Error Category Distribution',
|
| 131 |
+
'Error Samples by Index',
|
| 132 |
+
'Ground Truth vs Predicted Values',
|
| 133 |
+
'Error Analysis Summary'
|
| 134 |
+
),
|
| 135 |
+
specs=[[{"type": "pie"}, {"type": "scatter"}],
|
| 136 |
+
[{"type": "scatter"}, {"type": "table"}]]
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Pie chart - Error distribution with specified colors
|
| 140 |
+
fig.add_trace(
|
| 141 |
+
go.Pie(
|
| 142 |
+
labels=categories,
|
| 143 |
+
values=counts,
|
| 144 |
+
hole=0.4,
|
| 145 |
+
textinfo='label+value+percent',
|
| 146 |
+
hoverinfo='label+value+percent',
|
| 147 |
+
name="Error Types",
|
| 148 |
+
marker=dict(colors=[ERROR_CATEGORY_COLORS[cat] for cat in categories])
|
| 149 |
+
),
|
| 150 |
+
row=1, col=1
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Scatter plot - Error samples by index
|
| 154 |
+
for category in categories:
|
| 155 |
+
category_errors = error_df[error_df['category'] == category]
|
| 156 |
+
if not category_errors.empty:
|
| 157 |
+
fig.add_trace(
|
| 158 |
+
go.Scatter(
|
| 159 |
+
x=category_errors['sample_index'],
|
| 160 |
+
y=[1] * len(category_errors),
|
| 161 |
+
mode='markers',
|
| 162 |
+
marker=dict(size=12, color=ERROR_CATEGORY_COLORS[category]),
|
| 163 |
+
name=category,
|
| 164 |
+
text=category_errors['question_preview'],
|
| 165 |
+
hoverinfo='text+x+y+name'
|
| 166 |
+
),
|
| 167 |
+
row=1, col=2
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Scatter plot - Ground truth vs predicted
|
| 171 |
+
if not error_df.empty:
|
| 172 |
+
fig.add_trace(
|
| 173 |
+
go.Scatter(
|
| 174 |
+
x=error_df['ground_truth'].astype(float),
|
| 175 |
+
y=error_df['predicted'].astype(float),
|
| 176 |
+
mode='markers',
|
| 177 |
+
marker=dict(
|
| 178 |
+
size=10,
|
| 179 |
+
color=[ERROR_CATEGORY_COLORS[cat] for cat in error_df['category']],
|
| 180 |
+
opacity=0.7
|
| 181 |
+
),
|
| 182 |
+
text=error_df['category'] + ": Sample " + error_df['sample_index'].astype(str),
|
| 183 |
+
hoverinfo='text+x+y',
|
| 184 |
+
name='GT vs Predicted'
|
| 185 |
+
),
|
| 186 |
+
row=2, col=1
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Add ideal line
|
| 190 |
+
max_val = max(max(error_df['ground_truth'].astype(float)), max(error_df['predicted'].astype(float))) + 10
|
| 191 |
+
fig.add_trace(
|
| 192 |
+
go.Scatter(
|
| 193 |
+
x=[0, max_val],
|
| 194 |
+
y=[0, max_val],
|
| 195 |
+
mode='lines',
|
| 196 |
+
line=dict(dash='dash', color='gray'),
|
| 197 |
+
name='Ideal',
|
| 198 |
+
showlegend=False
|
| 199 |
+
),
|
| 200 |
+
row=2, col=1
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
# Table - Error summary
|
| 204 |
+
summary_data = []
|
| 205 |
+
for category in categories:
|
| 206 |
+
for error in error_categories[category]:
|
| 207 |
+
summary_data.append([
|
| 208 |
+
error.get("index", "N/A"),
|
| 209 |
+
category,
|
| 210 |
+
error["ground_truth"],
|
| 211 |
+
error["predicted_answer"],
|
| 212 |
+
"β" if error["ground_truth"] == error["predicted_answer"] else "β"
|
| 213 |
+
])
|
| 214 |
+
|
| 215 |
+
if summary_data:
|
| 216 |
+
fig.add_trace(
|
| 217 |
+
go.Table(
|
| 218 |
+
header=dict(values=['Sample', 'Category', 'Ground Truth', 'Predicted', 'Correct']),
|
| 219 |
+
cells=dict(values=[
|
| 220 |
+
[row[0] for row in summary_data],
|
| 221 |
+
[row[1] for row in summary_data],
|
| 222 |
+
[row[2] for row in summary_data],
|
| 223 |
+
[row[3] for row in summary_data],
|
| 224 |
+
[row[4] for row in summary_data]
|
| 225 |
+
]),
|
| 226 |
+
name='Error Details'
|
| 227 |
+
),
|
| 228 |
+
row=2, col=2
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Update layout
|
| 232 |
+
fig.update_layout(
|
| 233 |
+
title=f"Comprehensive Error Analysis - {num_samples} Samples ({len(errors)} Errors)",
|
| 234 |
+
height=1000,
|
| 235 |
+
width=1400,
|
| 236 |
+
showlegend=True
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
fig.update_xaxes(title_text="Sample Index", row=1, col=2)
|
| 240 |
+
fig.update_yaxes(title_text="", row=1, col=2, showticklabels=False)
|
| 241 |
+
fig.update_xaxes(title_text="Ground Truth", row=2, col=1)
|
| 242 |
+
fig.update_yaxes(title_text="Predicted", row=2, col=1)
|
| 243 |
+
|
| 244 |
+
return fig, error_categories
|
| 245 |
+
|
| 246 |
+
def generate_detailed_error_report(error_categories: Dict, num_samples: int):
|
| 247 |
+
"""Generate a detailed report with analysis of each error category"""
|
| 248 |
+
|
| 249 |
+
total_errors = sum(len(errors) for errors in error_categories.values())
|
| 250 |
+
accuracy = (num_samples - total_errors) / num_samples * 100 if num_samples > 0 else 0
|
| 251 |
+
|
| 252 |
+
report = ["# Detailed Error Analysis Report", ""]
|
| 253 |
+
report.append(f"**Total Samples**: {num_samples}")
|
| 254 |
+
report.append(f"**Total Errors**: {total_errors}")
|
| 255 |
+
report.append(f"**Overall Accuracy**: {accuracy:.1f}%")
|
| 256 |
+
report.append("")
|
| 257 |
+
|
| 258 |
+
for category, errors in error_categories.items():
|
| 259 |
+
if errors:
|
| 260 |
+
report.append(f"## {category.upper()} Errors ({len(errors)} errors)")
|
| 261 |
+
report.append("")
|
| 262 |
+
|
| 263 |
+
for i, error in enumerate(errors, 1):
|
| 264 |
+
report.append(f"### Error {i}: Sample {error.get('index', 'N/A')}")
|
| 265 |
+
report.append("**Question:**")
|
| 266 |
+
report.append(f"> {error['question']}")
|
| 267 |
+
report.append("")
|
| 268 |
+
report.append("**Ground Truth:**")
|
| 269 |
+
report.append(f"`{error['ground_truth']}`")
|
| 270 |
+
report.append("")
|
| 271 |
+
report.append("**Model Prediction:**")
|
| 272 |
+
report.append(f"`{error['predicted_answer']}`")
|
| 273 |
+
report.append("")
|
| 274 |
+
report.append("**Error Analysis:**")
|
| 275 |
+
report.append(analyze_specific_error(error, category))
|
| 276 |
+
report.append("")
|
| 277 |
+
report.append("**Suggested Improvement:**")
|
| 278 |
+
report.append(suggest_improvement(error, category))
|
| 279 |
+
report.append("---")
|
| 280 |
+
report.append("")
|
| 281 |
+
|
| 282 |
+
return "\n".join(report)
|
| 283 |
+
|
| 284 |
+
def analyze_specific_error(error: Dict, category: str) -> str:
|
| 285 |
+
"""Provide specific analysis for each error"""
|
| 286 |
+
question = error["question"]
|
| 287 |
+
generated = error.get("generated_text", "")
|
| 288 |
+
|
| 289 |
+
if category == "percentage":
|
| 290 |
+
return "Percentage calculation error - likely misunderstanding of percentage relationships or incorrect application of percentage formulas."
|
| 291 |
+
|
| 292 |
+
elif category == "multi_step":
|
| 293 |
+
# Check for specific multi-step failure patterns
|
| 294 |
+
if "then" not in generated.lower() and "so" not in generated.lower():
|
| 295 |
+
return "Missing logical connectors - model failed to show step-by-step reasoning process."
|
| 296 |
+
elif generated.count('\n') < 3:
|
| 297 |
+
return "Insufficient step breakdown - model attempted to solve in too few steps."
|
| 298 |
+
else:
|
| 299 |
+
return "Complex multi-step reasoning failure - model understood individual steps but failed to combine them correctly."
|
| 300 |
+
|
| 301 |
+
elif category == "unit_conversion":
|
| 302 |
+
return "Unit conversion error - likely misunderstanding of measurement units or incorrect conversion between units."
|
| 303 |
+
|
| 304 |
+
return "General reasoning error - model struggled with the problem structure."
|
| 305 |
+
|
| 306 |
+
def suggest_improvement(error: Dict, category: str) -> str:
|
| 307 |
+
"""Provide specific improvement suggestions"""
|
| 308 |
+
if category == "percentage":
|
| 309 |
+
return "Train on more percentage word problems with varied contexts. Implement percentage-specific prompting strategies."
|
| 310 |
+
|
| 311 |
+
elif category == "multi_step":
|
| 312 |
+
return "Use chain-of-thought fine-tuning. Break complex problems into sub-tasks. Add intermediate supervision during training."
|
| 313 |
+
|
| 314 |
+
elif category == "unit_conversion":
|
| 315 |
+
return "Practice unit conversion problems with step-by-step solutions. Focus on measurement and currency conversion scenarios. Train on real-world unit conversion applications."
|
| 316 |
+
|
| 317 |
+
return "General reasoning training with diverse problem types and increased context understanding."
|
| 318 |
+
|
| 319 |
+
def main():
|
| 320 |
+
# Load results
|
| 321 |
+
results = load_results('few_shot_results_errors_only.json')
|
| 322 |
+
|
| 323 |
+
if not results:
|
| 324 |
+
print("β No results found. Exiting.")
|
| 325 |
+
return
|
| 326 |
+
|
| 327 |
+
num_samples = len(results)
|
| 328 |
+
print(f"π Performing comprehensive error analysis on {num_samples} error samples...")
|
| 329 |
+
|
| 330 |
+
fig, error_categories = create_comprehensive_visualization(results, num_samples)
|
| 331 |
+
|
| 332 |
+
# Save visualization
|
| 333 |
+
fig.write_html("enhanced_error_analysis.html")
|
| 334 |
+
print("πΎ Enhanced visualization saved to enhanced_error_analysis.html")
|
| 335 |
+
|
| 336 |
+
# Generate detailed report
|
| 337 |
+
report = generate_detailed_error_report(error_categories, num_samples)
|
| 338 |
+
with open("detailed_error_report.md", "w") as f:
|
| 339 |
+
f.write(report)
|
| 340 |
+
print("π Detailed report saved to detailed_error_report.md")
|
| 341 |
+
|
| 342 |
+
# Print summary
|
| 343 |
+
total_errors = sum(len(errors) for errors in error_categories.values())
|
| 344 |
+
print(f"\nπ Error Summary:")
|
| 345 |
+
for category, errors in error_categories.items():
|
| 346 |
+
if errors:
|
| 347 |
+
percentage = len(errors)/total_errors*100 if total_errors > 0 else 0
|
| 348 |
+
print(f" {category.upper()}: {len(errors)} errors ({percentage:.1f}%)")
|
| 349 |
+
|
| 350 |
+
print(f" Overall Accuracy: {((num_samples - total_errors) / num_samples * 100):.1f}%" if num_samples > 0 else "N/A")
|
| 351 |
+
|
| 352 |
+
if __name__ == "__main__":
|
| 353 |
+
main()
|
Generate Error Analysis Visualizations/updated_error_analysis.py
ADDED
|
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# updated_error_analysis.py
|
| 2 |
+
import json
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
from plotly.subplots import make_subplots
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from typing import Dict, List, Any
|
| 8 |
+
import argparse
|
| 9 |
+
|
| 10 |
+
# Error categories with detailed descriptions
|
| 11 |
+
ERROR_CATEGORIES = {
|
| 12 |
+
"multi_step": "Chain-of-thought reasoning failures in multi-step problems",
|
| 13 |
+
"percentage": "Percentage and ratio calculations",
|
| 14 |
+
"logic": "Logical reasoning and problem setup failures",
|
| 15 |
+
"unit_conversion": "Measurement and unit conversion errors"
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
def classify_error_type(result: Dict[str, Any]) -> str:
|
| 19 |
+
"""
|
| 20 |
+
Classify the type of error based on the question, ground truth, and predicted answer
|
| 21 |
+
"""
|
| 22 |
+
question = result["question"].lower()
|
| 23 |
+
ground_truth = str(result["ground_truth"]).lower()
|
| 24 |
+
predicted = str(result["predicted_answer"]).lower()
|
| 25 |
+
|
| 26 |
+
# Check for percentage problems
|
| 27 |
+
if any(term in question for term in ['%', 'percent', 'percentage']):
|
| 28 |
+
return "percentage"
|
| 29 |
+
|
| 30 |
+
# Check for unit conversion issues - prioritize this over multi-step
|
| 31 |
+
if any(unit in question for unit in ['pound', 'pounds', 'ounce', 'ounces', 'gallon', 'gallons',
|
| 32 |
+
'mile', 'miles', 'hour', 'hours', 'minute', 'minutes',
|
| 33 |
+
'second', 'seconds', 'dollar', 'dollars', 'cent', 'cents']):
|
| 34 |
+
return "unit_conversion"
|
| 35 |
+
|
| 36 |
+
# Check for multi-step problems (complex wording)
|
| 37 |
+
# Exclude simple arithmetic problems that happen to have "twice", "half", etc.
|
| 38 |
+
multi_step_indicators = [
|
| 39 |
+
len(question.split()) > 30, # Longer questions are more complex
|
| 40 |
+
any(connector in question for connector in ['if', 'then', 'after', 'before', 'when', 'however', 'since']),
|
| 41 |
+
question.count('and') > 3, # More connections indicate complexity
|
| 42 |
+
any(phrase in question for phrase in ['first', 'then', 'next', 'finally', 'after that']),
|
| 43 |
+
any(term in question for term in ['each', 'every', 'per', 'total', 'combined'])
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
# Additional check to exclude simple problems with basic operations
|
| 47 |
+
simple_arithmetic_indicators = [
|
| 48 |
+
question.count('+') > 0,
|
| 49 |
+
question.count('-') > 0,
|
| 50 |
+
question.count('*') > 0,
|
| 51 |
+
question.count('/') > 0,
|
| 52 |
+
question.count('times') > 0,
|
| 53 |
+
question.count('plus') > 0,
|
| 54 |
+
question.count('minus') > 0
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
# Only classify as multi-step if it has multiple complexity indicators
|
| 58 |
+
# but doesn't look like simple arithmetic
|
| 59 |
+
complexity_score = sum(multi_step_indicators)
|
| 60 |
+
if complexity_score >= 3 and sum(simple_arithmetic_indicators) <= 2:
|
| 61 |
+
return "multi_step"
|
| 62 |
+
|
| 63 |
+
# Default to logic if other categories don't fit
|
| 64 |
+
return "logic"
|
| 65 |
+
|
| 66 |
+
def load_results(filename: str = "few_shot_results_errors_only.json") -> List[Dict[str, Any]]:
|
| 67 |
+
"""Load the evaluation results from JSON file"""
|
| 68 |
+
try:
|
| 69 |
+
with open(filename, 'r') as f:
|
| 70 |
+
data = json.load(f)
|
| 71 |
+
|
| 72 |
+
# Handle both formats: full results and error-only results
|
| 73 |
+
if "results" in data:
|
| 74 |
+
results = data.get("results", [])
|
| 75 |
+
# For error-only files, ensure all are marked as incorrect
|
| 76 |
+
for result in results:
|
| 77 |
+
result["is_correct"] = False
|
| 78 |
+
return results
|
| 79 |
+
else:
|
| 80 |
+
# Assume it's a list of results directly
|
| 81 |
+
return data
|
| 82 |
+
|
| 83 |
+
except FileNotFoundError:
|
| 84 |
+
print(f"Error: File {filename} not found.")
|
| 85 |
+
return []
|
| 86 |
+
except json.JSONDecodeError:
|
| 87 |
+
print(f"Error: Invalid JSON format in {filename}.")
|
| 88 |
+
return []
|
| 89 |
+
|
| 90 |
+
def analyze_errors(results: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 91 |
+
"""Perform comprehensive error analysis"""
|
| 92 |
+
total_samples = len(results)
|
| 93 |
+
|
| 94 |
+
# For error-only analysis, all samples are incorrect
|
| 95 |
+
correct_count = 0
|
| 96 |
+
incorrect_count = total_samples
|
| 97 |
+
|
| 98 |
+
# Categorize errors
|
| 99 |
+
error_categories = {category: [] for category in ERROR_CATEGORIES}
|
| 100 |
+
error_categories["correct"] = []
|
| 101 |
+
|
| 102 |
+
for result in results:
|
| 103 |
+
if result["is_correct"]:
|
| 104 |
+
error_categories["correct"].append(result)
|
| 105 |
+
else:
|
| 106 |
+
error_type = classify_error_type(result)
|
| 107 |
+
error_categories[error_type].append(result)
|
| 108 |
+
|
| 109 |
+
# Calculate statistics
|
| 110 |
+
accuracy = (correct_count / total_samples) * 100 if total_samples > 0 else 0
|
| 111 |
+
|
| 112 |
+
category_stats = {
|
| 113 |
+
"total_samples": total_samples,
|
| 114 |
+
"correct_count": correct_count,
|
| 115 |
+
"incorrect_count": incorrect_count,
|
| 116 |
+
"accuracy": accuracy,
|
| 117 |
+
"category_counts": {cat: len(errors) for cat, errors in error_categories.items()},
|
| 118 |
+
"category_percentages": {
|
| 119 |
+
cat: (len(errors) / total_samples * 100) if total_samples > 0 else 0
|
| 120 |
+
for cat, errors in error_categories.items()
|
| 121 |
+
},
|
| 122 |
+
"detailed_errors": error_categories
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
return category_stats
|
| 126 |
+
|
| 127 |
+
def create_visualizations(stats: Dict[str, Any], num_samples: int):
|
| 128 |
+
"""Create interactive Plotly visualizations with specified color scheme"""
|
| 129 |
+
|
| 130 |
+
# Prepare data for visualizations
|
| 131 |
+
categories = list(ERROR_CATEGORIES.keys()) + ["correct"]
|
| 132 |
+
counts = [stats["category_counts"].get(cat, 0) for cat in categories]
|
| 133 |
+
percentages = [stats["category_percentages"].get(cat, 0) for cat in categories]
|
| 134 |
+
|
| 135 |
+
# Create subplots
|
| 136 |
+
fig = make_subplots(
|
| 137 |
+
rows=2, cols=2,
|
| 138 |
+
subplot_titles=(
|
| 139 |
+
f'Error Distribution (n={num_samples})',
|
| 140 |
+
'Error Category Breakdown',
|
| 141 |
+
'Error Percentage by Category',
|
| 142 |
+
'Sample Index vs Error Type'
|
| 143 |
+
),
|
| 144 |
+
specs=[[{"type": "pie"}, {"type": "bar"}],
|
| 145 |
+
[{"type": "scatter"}, {"type": "scatter"}]]
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Define color scheme
|
| 149 |
+
color_map = {
|
| 150 |
+
'multi_step': 'red',
|
| 151 |
+
'percentage': 'blue',
|
| 152 |
+
'logic': 'orange',
|
| 153 |
+
'unit_conversion': 'purple',
|
| 154 |
+
'correct': 'green'
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
# Pie chart - Error distribution
|
| 158 |
+
error_categories_pie = [cat for cat in categories if cat != "correct" and stats["category_counts"].get(cat, 0) > 0]
|
| 159 |
+
error_counts_pie = [stats["category_counts"].get(cat, 0) for cat in error_categories_pie]
|
| 160 |
+
pie_colors = [color_map.get(cat, 'gray') for cat in error_categories_pie]
|
| 161 |
+
|
| 162 |
+
fig.add_trace(
|
| 163 |
+
go.Pie(
|
| 164 |
+
labels=error_categories_pie,
|
| 165 |
+
values=error_counts_pie,
|
| 166 |
+
name="Error Types",
|
| 167 |
+
hole=0.4,
|
| 168 |
+
textinfo='label+percent',
|
| 169 |
+
hoverinfo='label+value+percent',
|
| 170 |
+
marker=dict(colors=pie_colors),
|
| 171 |
+
showlegend=False
|
| 172 |
+
),
|
| 173 |
+
row=1, col=1
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Bar chart - Category counts
|
| 177 |
+
non_zero_categories = [cat for cat in categories if cat != "correct" and stats["category_counts"].get(cat, 0) > 0]
|
| 178 |
+
non_zero_counts = [stats["category_counts"].get(cat, 0) for cat in non_zero_categories]
|
| 179 |
+
non_zero_percentages = [stats["category_percentages"].get(cat, 0) for cat in non_zero_categories]
|
| 180 |
+
bar_colors = [color_map.get(cat, 'gray') for cat in non_zero_categories]
|
| 181 |
+
|
| 182 |
+
fig.add_trace(
|
| 183 |
+
go.Bar(
|
| 184 |
+
x=non_zero_categories,
|
| 185 |
+
y=non_zero_counts,
|
| 186 |
+
name="Count by Category",
|
| 187 |
+
marker_color=bar_colors,
|
| 188 |
+
text=[f"{count}<br>{percent:.1f}%" for count, percent in zip(non_zero_counts, non_zero_percentages)],
|
| 189 |
+
textposition='auto',
|
| 190 |
+
hoverinfo='x+y'
|
| 191 |
+
),
|
| 192 |
+
row=1, col=2
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Scatter plot - Error percentage by category
|
| 196 |
+
error_df = pd.DataFrame({
|
| 197 |
+
'Category': categories,
|
| 198 |
+
'Percentage': percentages,
|
| 199 |
+
'Count': counts
|
| 200 |
+
})
|
| 201 |
+
error_df = error_df[error_df['Count'] > 0] # Only show categories with samples
|
| 202 |
+
scatter_colors = [color_map.get(cat, 'gray') for cat in error_df['Category']]
|
| 203 |
+
|
| 204 |
+
fig.add_trace(
|
| 205 |
+
go.Scatter(
|
| 206 |
+
x=error_df['Category'],
|
| 207 |
+
y=error_df['Percentage'],
|
| 208 |
+
mode='markers+text',
|
| 209 |
+
marker=dict(
|
| 210 |
+
size=error_df['Count']*2 + 10,
|
| 211 |
+
color=scatter_colors,
|
| 212 |
+
opacity=0.8
|
| 213 |
+
),
|
| 214 |
+
text=error_df['Count'],
|
| 215 |
+
textposition='middle center',
|
| 216 |
+
name='Error Percentage',
|
| 217 |
+
hoverinfo='text',
|
| 218 |
+
hovertext=[f"{cat}: {pct:.1f}% ({cnt} samples)" for cat, pct, cnt in
|
| 219 |
+
zip(error_df['Category'], error_df['Percentage'], error_df['Count'])]
|
| 220 |
+
),
|
| 221 |
+
row=2, col=1
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# Scatter plot - Sample index vs error type
|
| 225 |
+
all_results = []
|
| 226 |
+
for category in ERROR_CATEGORIES:
|
| 227 |
+
for result in stats["detailed_errors"][category]:
|
| 228 |
+
all_results.append((result, category))
|
| 229 |
+
|
| 230 |
+
# Sort by sample index
|
| 231 |
+
all_results.sort(key=lambda x: x[0].get("index", 0))
|
| 232 |
+
|
| 233 |
+
sample_indices = [result[0].get("index", i+1) for i, result in enumerate(all_results)]
|
| 234 |
+
error_types = [result[1] for result in all_results]
|
| 235 |
+
error_colors = [color_map.get(error_type, 'gray') for error_type in error_types]
|
| 236 |
+
|
| 237 |
+
fig.add_trace(
|
| 238 |
+
go.Scatter(
|
| 239 |
+
x=sample_indices,
|
| 240 |
+
y=[1] * len(all_results), # All are errors, so y=1
|
| 241 |
+
mode='markers',
|
| 242 |
+
marker=dict(
|
| 243 |
+
color=error_colors,
|
| 244 |
+
size=12,
|
| 245 |
+
opacity=0.7
|
| 246 |
+
),
|
| 247 |
+
name='Error Types by Sample',
|
| 248 |
+
hoverinfo='x+y+text',
|
| 249 |
+
hovertext=[f"Sample {result[0].get('index', 'N/A')}: {result[1]}" for result in all_results]
|
| 250 |
+
),
|
| 251 |
+
row=2, col=2
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Update layout
|
| 255 |
+
fig.update_layout(
|
| 256 |
+
title=f"Symbolic-Math-Qwen2.5-1.5B-LoRA Error Analysis (n={num_samples} errors)",
|
| 257 |
+
height=1000,
|
| 258 |
+
width=1200,
|
| 259 |
+
showlegend=False
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
fig.update_xaxes(title_text="Error Categories", row=1, col=2)
|
| 263 |
+
fig.update_yaxes(title_text="Number of Errors", row=1, col=2)
|
| 264 |
+
fig.update_xaxes(title_text="Categories", row=2, col=1)
|
| 265 |
+
fig.update_yaxes(title_text="Percentage (%)", row=2, col=1)
|
| 266 |
+
fig.update_xaxes(title_text="Sample Index", row=2, col=2)
|
| 267 |
+
fig.update_yaxes(title_text="Error Type", row=2, col=2, tickvals=[1], ticktext=["Errors"])
|
| 268 |
+
|
| 269 |
+
return fig
|
| 270 |
+
|
| 271 |
+
def generate_detailed_report(stats: Dict[str, Any]):
|
| 272 |
+
"""Generate a detailed text report of the analysis"""
|
| 273 |
+
report = []
|
| 274 |
+
|
| 275 |
+
report.append("=" * 60)
|
| 276 |
+
report.append("SYMBOLIC-MATH-QWEN2.5-1.5B-LoRA ERROR ANALYSIS REPORT")
|
| 277 |
+
report.append("=" * 60)
|
| 278 |
+
report.append(f"Total Error Samples: {stats['total_samples']}")
|
| 279 |
+
report.append(f"Overall Accuracy: {stats['accuracy']:.2f}%")
|
| 280 |
+
report.append("")
|
| 281 |
+
|
| 282 |
+
report.append("ERROR CATEGORY BREAKDOWN:")
|
| 283 |
+
report.append("-" * 40)
|
| 284 |
+
for category, count in stats['category_counts'].items():
|
| 285 |
+
if category != "correct" and count > 0:
|
| 286 |
+
percentage = stats['category_percentages'][category]
|
| 287 |
+
report.append(f"{category.upper():<20}: {count:>3} errors ({percentage:>5.1f}%)")
|
| 288 |
+
|
| 289 |
+
report.append("")
|
| 290 |
+
report.append("RECOMMENDATIONS:")
|
| 291 |
+
report.append("-" * 40)
|
| 292 |
+
|
| 293 |
+
# Generate recommendations based on error patterns
|
| 294 |
+
if stats['category_counts'].get('percentage', 0) > 0:
|
| 295 |
+
report.append("β’ Add percentage calculation training examples")
|
| 296 |
+
report.append("β’ Implement percentage-specific prompting strategies")
|
| 297 |
+
report.append("β’ Train on more percentage word problems with varied contexts")
|
| 298 |
+
|
| 299 |
+
if stats['category_counts'].get('multi_step', 0) > 0:
|
| 300 |
+
report.append("β’ Focus on chain-of-thought reasoning training")
|
| 301 |
+
report.append("β’ Break down complex problems into sub-steps")
|
| 302 |
+
report.append("β’ Add intermediate supervision during training")
|
| 303 |
+
|
| 304 |
+
if stats['category_counts'].get('logic', 0) > 0:
|
| 305 |
+
report.append("β’ Improve logical reasoning capabilities")
|
| 306 |
+
report.append("β’ Train on problem setup and structure understanding")
|
| 307 |
+
report.append("β’ General reasoning training with diverse problem types")
|
| 308 |
+
|
| 309 |
+
if stats['category_counts'].get('unit_conversion', 0) > 0:
|
| 310 |
+
report.append("β’ Practice unit conversion problems")
|
| 311 |
+
report.append("β’ Focus on measurement and currency conversions")
|
| 312 |
+
report.append("β’ Train on real-world unit conversion scenarios")
|
| 313 |
+
|
| 314 |
+
return "\n".join(report)
|
| 315 |
+
|
| 316 |
+
def main():
|
| 317 |
+
parser = argparse.ArgumentParser(description="Analyze Symbolic-Math-Qwen2.5-1.5B-LoRA errors on GSM8K dataset")
|
| 318 |
+
parser.add_argument("--samples", type=int, default=16, help="Number of error samples analyzed")
|
| 319 |
+
parser.add_argument("--input", type=str, default="few_shot_results_errors_only.json", help="Input JSON file")
|
| 320 |
+
parser.add_argument("--output", type=str, default="error_analysis.html", help="Output HTML file")
|
| 321 |
+
|
| 322 |
+
args = parser.parse_args()
|
| 323 |
+
|
| 324 |
+
print(f"π Analyzing {args.samples} error samples...")
|
| 325 |
+
print(f"π Loading results from {args.input}")
|
| 326 |
+
|
| 327 |
+
# Load and analyze results
|
| 328 |
+
results = load_results(args.input)
|
| 329 |
+
if not results:
|
| 330 |
+
print("β No results found. Exiting.")
|
| 331 |
+
return
|
| 332 |
+
|
| 333 |
+
# Limit to specified number of samples
|
| 334 |
+
results = results[:args.samples]
|
| 335 |
+
|
| 336 |
+
print("π Performing error analysis...")
|
| 337 |
+
stats = analyze_errors(results)
|
| 338 |
+
|
| 339 |
+
# Generate visualizations
|
| 340 |
+
print("π Creating visualizations...")
|
| 341 |
+
fig = create_visualizations(stats, args.samples)
|
| 342 |
+
|
| 343 |
+
# Save visualizations
|
| 344 |
+
fig.write_html(args.output)
|
| 345 |
+
print(f"πΎ Visualizations saved to {args.output}")
|
| 346 |
+
|
| 347 |
+
# Generate and print detailed report
|
| 348 |
+
report = generate_detailed_report(stats)
|
| 349 |
+
print("\n" + report)
|
| 350 |
+
|
| 351 |
+
# Save report to file
|
| 352 |
+
report_filename = f"error_analysis_report_{args.samples}_errors.txt"
|
| 353 |
+
with open(report_filename, 'w') as f:
|
| 354 |
+
f.write(report)
|
| 355 |
+
print(f"π Detailed report saved to {report_filename}")
|
| 356 |
+
|
| 357 |
+
print(f"\nπ― Error analysis complete! Found {stats['total_samples']} error samples")
|
| 358 |
+
print("π Open the HTML file in your browser to view interactive visualizations")
|
| 359 |
+
|
| 360 |
+
if __name__ == "__main__":
|
| 361 |
+
main()
|