--- license: apache-2.0 language: - en tags: - code - cobol - code-documentation - qwen - qwen2.5 - instruction-tuning - llm - generative-model library_name: transformers pipeline_tag: text-generation base_model: Qwen/Qwen2.5-Coder-3B-Instruct model_name: qwen-code-doc-ft --- # Qwen2.5-Coder-3B-Instruct – Fine-tuned for COBOL Code Documentation This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct), optimized for generating natural language documentation from COBOL source code. The fine-tuning was done using **freeze fine-tuning** on the **last transformer layer only**, preserving the rest of the model's pretrained weights. ## 🔧 Model Description - **Architecture**: Qwen2.5-Coder-3B (decoder-only transformer) - **Base Model**: [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) - **Fine-tuning Method**: Freeze fine-tuning (only last transformer block's parameters were updated) - **Training Objective**: Instruction-following text generation for COBOL code documentation ## 🧠 Use Cases This model is specialized in generating descriptive documentation for legacy COBOL code, especially useful for: - **Legacy system maintenance** - **Automated codebase documentation** - **Migration planning** - **COBOL code understanding and onboarding** ## ✍️ Example Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline model_name = "V7W3D/qwen-code-doc-ft" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) doc_gen = pipeline("text-generation", model=model, tokenizer=tokenizer) prompt = "### Document this COBOL code:\n\n IDENTIFICATION DIVISION.\n PROGRAM-ID. HELLO-WORLD.\n PROCEDURE DIVISION.\n DISPLAY 'HELLO, WORLD!'\n STOP RUN.\n\n### Documentation:" response = doc_gen(prompt, max_new_tokens=200, do_sample=False) print(response[0]["generated_text"])