--- base_model: meta-llama/Llama-3.2-1B-Instruct library_name: peft license: llama3.2 tags: - trl - sft - generated_from_trainer - lora model-index: - name: llama-3.2-1B-it-Procurtech-Assistant results: [] datasets: - Victorano/procurtech-assistant-training-dataset language: - en pipeline_tag: text2text-generation --- # llama-3.2-1B-it-Procurtech-Assistant This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on [Procurtech Assistant dataset](https://huggingface.co/datasets/Victorano/procurtech-assistant-training-dataset). ## Model description A customer support model to help customers with their orders, incase they encounter any difficulty. ## Intended uses & limitations The training dataset can be modified, see original at [customer support dataset](https://huggingface.co/bitext/Bitext-customer-support-llm-chatbot-training-dataset) .. I edited the system message with a bit of prompt engineering, included additional details about the eCommerce company. You can decide what you want and further fine tune the model... ## Training and evaluation data [Training data](https://huggingface.co/datasets/Victorano/procurtech-assistant-training-dataset). Used the complete dataset for training, no evaluation data, I evaluated with random prompts... ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 682 - num_epochs: 1 ### Training results [Training Loss from wandb](https://api.wandb.ai/links/victordareai/o4f88gmp) ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1