File size: 14,995 Bytes
dc2b9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
#!/usr/bin/env python3
"""
Test WrinkleBrane Optimizations
Validate performance and fidelity improvements from optimizations.
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).resolve().parent / "src"))
import torch
import numpy as np
import time
from wrinklebrane.membrane_bank import MembraneBank
from wrinklebrane.codes import hadamard_codes
from wrinklebrane.slicer import make_slicer
from wrinklebrane.write_ops import store_pairs
from wrinklebrane.metrics import psnr, ssim
from wrinklebrane.optimizations import (
compute_adaptive_alphas,
generate_extended_codes,
HierarchicalMembraneBank,
optimized_store_pairs
)
def test_adaptive_alphas():
"""Test adaptive alpha scaling vs uniform alphas."""
print("🧪 Testing Adaptive Alpha Scaling...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
B, L, H, W, K = 1, 32, 16, 16, 8
# Create test setup
bank_uniform = MembraneBank(L, H, W, device=device)
bank_adaptive = MembraneBank(L, H, W, device=device)
bank_uniform.allocate(B)
bank_adaptive.allocate(B)
C = hadamard_codes(L, K).to(device)
slicer = make_slicer(C)
# Create test patterns with varying energies
patterns = []
for i in range(K):
pattern = torch.zeros(H, W, device=device)
# Create patterns with different energy levels
energy_scale = 0.1 + i * 0.3 # Varying from 0.1 to 2.2
if i % 3 == 0: # High energy circles
for y in range(H):
for x in range(W):
if (x - H//2)**2 + (y - W//2)**2 <= (3 + i//3)**2:
pattern[y, x] = energy_scale
elif i % 3 == 1: # Medium energy squares
size = 4 + i//3
start = (H - size) // 2
pattern[start:start+size, start:start+size] = energy_scale * 0.5
else: # Low energy lines
for d in range(min(H, W)):
if d + i//3 < H and d + i//3 < W:
pattern[d + i//3, d] = energy_scale * 0.1
patterns.append(pattern)
patterns = torch.stack(patterns)
keys = torch.arange(K, device=device)
# Test uniform alphas
uniform_alphas = torch.ones(K, device=device)
M_uniform = store_pairs(bank_uniform.read(), C, keys, patterns, uniform_alphas)
bank_uniform.write(M_uniform - bank_uniform.read())
uniform_readouts = slicer(bank_uniform.read()).squeeze(0)
# Test adaptive alphas
adaptive_alphas = compute_adaptive_alphas(patterns, C, keys)
M_adaptive = store_pairs(bank_adaptive.read(), C, keys, patterns, adaptive_alphas)
bank_adaptive.write(M_adaptive - bank_adaptive.read())
adaptive_readouts = slicer(bank_adaptive.read()).squeeze(0)
# Compare fidelity
uniform_psnr = []
adaptive_psnr = []
print(" Pattern-by-pattern comparison:")
for i in range(K):
u_psnr = psnr(patterns[i].cpu().numpy(), uniform_readouts[i].cpu().numpy())
a_psnr = psnr(patterns[i].cpu().numpy(), adaptive_readouts[i].cpu().numpy())
uniform_psnr.append(u_psnr)
adaptive_psnr.append(a_psnr)
energy = torch.norm(patterns[i]).item()
print(f" Pattern {i}: Energy={energy:.3f}, Alpha={adaptive_alphas[i]:.3f}")
print(f" Uniform PSNR: {u_psnr:.1f}dB, Adaptive PSNR: {a_psnr:.1f}dB")
avg_uniform = np.mean(uniform_psnr)
avg_adaptive = np.mean(adaptive_psnr)
improvement = avg_adaptive - avg_uniform
print(f"\n Results Summary:")
print(f" Uniform alphas: {avg_uniform:.1f}dB average PSNR")
print(f" Adaptive alphas: {avg_adaptive:.1f}dB average PSNR")
print(f" Improvement: {improvement:.1f}dB ({improvement/avg_uniform*100:.1f}%)")
return improvement > 0
def test_extended_codes():
"""Test extended code generation for K > L scenarios."""
print("\n🧪 Testing Extended Code Generation...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
L = 32 # Small number of layers
test_Ks = [16, 32, 64, 128] # Including K > L cases
results = {}
for K in test_Ks:
print(f" Testing L={L}, K={K} (capacity: {K/L:.1f}x)")
# Generate extended codes
C = generate_extended_codes(L, K, method="auto", device=device)
# Test orthogonality (only for the orthogonal part when K > L)
if K <= L:
G = C.T @ C
I_approx = torch.eye(K, device=device, dtype=C.dtype)
orthogonality_error = torch.norm(G - I_approx).item()
else:
# For overcomplete case, measure orthogonality of first L vectors
C_ortho = C[:, :L]
G = C_ortho.T @ C_ortho
I_approx = torch.eye(L, device=device, dtype=C.dtype)
orthogonality_error = torch.norm(G - I_approx).item()
# Test in actual storage scenario
B, H, W = 1, 8, 8
bank = MembraneBank(L, H, W, device=device)
bank.allocate(B)
slicer = make_slicer(C)
# Create test patterns (but limit keys to available codes)
# For K > C.shape[1] case, we test with fewer actual patterns
actual_K = min(K, C.shape[1])
patterns = torch.rand(actual_K, H, W, device=device)
keys = torch.arange(actual_K, device=device)
alphas = torch.ones(actual_K, device=device)
# Store and retrieve
M = store_pairs(bank.read(), C, keys, patterns, alphas)
bank.write(M - bank.read())
readouts = slicer(bank.read()).squeeze(0)
# Calculate average fidelity
psnr_values = []
for i in range(actual_K):
psnr_val = psnr(patterns[i].cpu().numpy(), readouts[i].cpu().numpy())
psnr_values.append(psnr_val)
avg_psnr = np.mean(psnr_values)
min_psnr = np.min(psnr_values)
std_psnr = np.std(psnr_values)
results[K] = {
"orthogonality_error": orthogonality_error,
"avg_psnr": avg_psnr,
"min_psnr": min_psnr,
"std_psnr": std_psnr
}
print(f" Orthogonality error: {orthogonality_error:.6f}")
print(f" PSNR: {avg_psnr:.1f}±{std_psnr:.1f}dB (min: {min_psnr:.1f}dB)")
return results
def test_hierarchical_memory():
"""Test hierarchical memory bank organization."""
print("\n🧪 Testing Hierarchical Memory Bank...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
L, H, W = 64, 32, 32
K = 32
# Create hierarchical bank
hierarchical_bank = HierarchicalMembraneBank(L, H, W, levels=3, device=device)
hierarchical_bank.allocate(1)
# Create regular bank for comparison
regular_bank = MembraneBank(L, H, W, device=device)
regular_bank.allocate(1)
# Create test patterns with different complexity levels
patterns = []
for i in range(K):
if i < K // 3: # High complexity patterns
pattern = torch.rand(H, W, device=device)
elif i < 2 * K // 3: # Medium complexity patterns
pattern = torch.zeros(H, W, device=device)
pattern[H//4:3*H//4, W//4:3*W//4] = torch.rand(H//2, W//2, device=device)
else: # Low complexity patterns
pattern = torch.zeros(H, W, device=device)
pattern[H//2-2:H//2+2, W//2-2:W//2+2] = torch.ones(4, 4, device=device)
patterns.append(pattern)
patterns = torch.stack(patterns)
keys = torch.arange(K, device=device)
# Test regular storage
C_regular = hadamard_codes(L, K).to(device)
slicer_regular = make_slicer(C_regular)
alphas_regular = torch.ones(K, device=device)
start_time = time.time()
M_regular = store_pairs(regular_bank.read(), C_regular, keys, patterns, alphas_regular)
regular_bank.write(M_regular - regular_bank.read())
regular_readouts = slicer_regular(regular_bank.read()).squeeze(0)
regular_time = time.time() - start_time
# Test hierarchical storage
start_time = time.time()
hierarchical_bank.store_hierarchical(patterns, keys)
hierarchical_time = time.time() - start_time
# Calculate memory usage
regular_memory = L * H * W * 4 # Single bank
hierarchical_memory = sum(bank.L * H * W * 4 for bank in hierarchical_bank.banks)
memory_savings = (regular_memory - hierarchical_memory) / regular_memory * 100
# Calculate regular fidelity
regular_psnr = []
for i in range(K):
psnr_val = psnr(patterns[i].cpu().numpy(), regular_readouts[i].cpu().numpy())
regular_psnr.append(psnr_val)
avg_regular_psnr = np.mean(regular_psnr)
print(f" Regular Bank:")
print(f" Storage time: {regular_time*1000:.2f}ms")
print(f" Memory usage: {regular_memory/1e6:.2f}MB")
print(f" Average PSNR: {avg_regular_psnr:.1f}dB")
print(f" Hierarchical Bank:")
print(f" Storage time: {hierarchical_time*1000:.2f}ms")
print(f" Memory usage: {hierarchical_memory/1e6:.2f}MB")
print(f" Memory savings: {memory_savings:.1f}%")
print(f" Levels: {hierarchical_bank.levels}")
for i, bank in enumerate(hierarchical_bank.banks):
level_fraction = bank.L / hierarchical_bank.total_L
print(f" Level {i}: L={bank.L} ({level_fraction:.1%})")
return memory_savings > 0
def test_optimized_storage():
"""Test the complete optimized storage pipeline."""
print("\n🧪 Testing Optimized Storage Pipeline...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
B, L, H, W, K = 1, 64, 32, 32, 48
# Create test banks
bank_original = MembraneBank(L, H, W, device=device)
bank_optimized = MembraneBank(L, H, W, device=device)
bank_original.allocate(B)
bank_optimized.allocate(B)
# Generate extended codes to handle K < L limit
C = generate_extended_codes(L, K, method="auto", device=device)
slicer = make_slicer(C)
# Create mixed complexity test patterns
patterns = []
for i in range(K):
if i % 4 == 0: # High energy patterns
pattern = torch.rand(H, W, device=device) * 2.0
elif i % 4 == 1: # Medium energy patterns
pattern = torch.rand(H, W, device=device) * 1.0
elif i % 4 == 2: # Low energy patterns
pattern = torch.rand(H, W, device=device) * 0.5
else: # Very sparse patterns
pattern = torch.zeros(H, W, device=device)
pattern[torch.rand(H, W, device=device) > 0.95] = torch.rand((torch.rand(H, W, device=device) > 0.95).sum(), device=device)
patterns.append(pattern)
patterns = torch.stack(patterns)
keys = torch.arange(K, device=device)
# Original storage
start_time = time.time()
alphas_original = torch.ones(K, device=device)
M_original = store_pairs(bank_original.read(), C, keys, patterns, alphas_original)
bank_original.write(M_original - bank_original.read())
original_readouts = slicer(bank_original.read()).squeeze(0)
original_time = time.time() - start_time
# Optimized storage
start_time = time.time()
M_optimized = optimized_store_pairs(
bank_optimized.read(), C, keys, patterns,
adaptive_alphas=True, sparsity_threshold=0.01
)
bank_optimized.write(M_optimized - bank_optimized.read())
optimized_readouts = slicer(bank_optimized.read()).squeeze(0)
optimized_time = time.time() - start_time
# Compare results
original_psnr = []
optimized_psnr = []
for i in range(K):
o_psnr = psnr(patterns[i].cpu().numpy(), original_readouts[i].cpu().numpy())
opt_psnr = psnr(patterns[i].cpu().numpy(), optimized_readouts[i].cpu().numpy())
original_psnr.append(o_psnr)
optimized_psnr.append(opt_psnr)
avg_original = np.mean(original_psnr)
avg_optimized = np.mean(optimized_psnr)
fidelity_improvement = avg_optimized - avg_original
speed_improvement = (original_time - optimized_time) / original_time * 100
print(f" Original Pipeline:")
print(f" Time: {original_time*1000:.2f}ms")
print(f" Average PSNR: {avg_original:.1f}dB")
print(f" Optimized Pipeline:")
print(f" Time: {optimized_time*1000:.2f}ms")
print(f" Average PSNR: {avg_optimized:.1f}dB")
print(f" Improvements:")
print(f" Fidelity: +{fidelity_improvement:.1f}dB ({fidelity_improvement/avg_original*100:.1f}%)")
print(f" Speed: {speed_improvement:.1f}% {'faster' if speed_improvement > 0 else 'slower'}")
return fidelity_improvement > 0
def main():
"""Run complete optimization test suite."""
print("🚀 WrinkleBrane Optimization Test Suite")
print("="*50)
# Set random seeds for reproducibility
torch.manual_seed(42)
np.random.seed(42)
success_count = 0
total_tests = 4
try:
# Test adaptive alphas
if test_adaptive_alphas():
print("✅ Adaptive alpha scaling: IMPROVED PERFORMANCE")
success_count += 1
else:
print("⚠️ Adaptive alpha scaling: NO IMPROVEMENT")
# Test extended codes
extended_results = test_extended_codes()
if all(r['avg_psnr'] > 50 for r in extended_results.values()): # Reasonable quality threshold
print("✅ Extended code generation: WORKING")
success_count += 1
else:
print("⚠️ Extended code generation: QUALITY ISSUES")
# Test hierarchical memory
if test_hierarchical_memory():
print("✅ Hierarchical memory: MEMORY SAVINGS")
success_count += 1
else:
print("⚠️ Hierarchical memory: NO SAVINGS")
# Test optimized storage
if test_optimized_storage():
print("✅ Optimized storage pipeline: IMPROVED FIDELITY")
success_count += 1
else:
print("⚠️ Optimized storage pipeline: NO IMPROVEMENT")
print("\n" + "="*50)
print(f"🎯 Optimization Results: {success_count}/{total_tests} improvements successful")
if success_count == total_tests:
print("🏆 ALL OPTIMIZATIONS WORKING PERFECTLY!")
elif success_count > total_tests // 2:
print("✅ MAJORITY OF OPTIMIZATIONS SUCCESSFUL")
else:
print("⚠️ Mixed results - some optimizations need work")
except Exception as e:
print(f"\n❌ Optimization tests failed with error: {e}")
import traceback
traceback.print_exc()
return False
return success_count > 0
if __name__ == "__main__":
main() |