WrinkleBrane / wrinklebrane_dataset_builder.py
WCNegentropy's picture
πŸ“š Updated with scientifically rigorous documentation
dc2b9f3 verified
"""
WrinkleBrane Dataset Builder & HuggingFace Integration
Creates curated datasets optimized for associative memory training with
membrane storage, interference studies, and orthogonality benchmarks.
"""
import os
import json
import gzip
import random
import math
from typing import List, Dict, Any, Optional, Tuple, Union
from pathlib import Path
from datetime import datetime
import tempfile
import torch
import numpy as np
from datasets import Dataset, DatasetDict
from huggingface_hub import HfApi, login, create_repo
class WrinkleBraneDatasetBuilder:
"""
Comprehensive dataset builder for WrinkleBrane associative memory training.
Generates:
- Key-value pairs for associative memory tasks
- Visual patterns (MNIST-style, geometric shapes)
- Interference benchmark sequences
- Orthogonality optimization data
- Persistence decay studies
"""
def __init__(self, hf_token: str, repo_id: str = "WrinkleBrane"):
"""Initialize with HuggingFace credentials."""
self.hf_token = hf_token
self.repo_id = repo_id
self.api = HfApi()
# Login to HuggingFace
login(token=hf_token)
# Dataset configuration
self.config = {
"version": "1.0.0",
"created": datetime.now().isoformat(),
"model_compatibility": "WrinkleBrane",
"membrane_encoding": "2D_spatial_maps",
"default_H": 64,
"default_W": 64,
"default_L": 64, # membrane layers
"default_K": 64, # codebook size
"total_samples": 20000,
"quality_thresholds": {
"min_fidelity_psnr": 20.0,
"max_interference_rms": 0.1,
"min_orthogonality": 0.8
}
}
def generate_visual_memory_pairs(self, num_samples: int = 5000, H: int = 64, W: int = 64) -> List[Dict]:
"""Generate visual key-value pairs for associative memory."""
samples = []
visual_types = [
"mnist_digits",
"geometric_shapes",
"noise_patterns",
"edge_features",
"texture_patches",
"sparse_dots"
]
for i in range(num_samples):
visual_type = random.choice(visual_types)
# Generate key pattern
key_pattern = self._generate_visual_pattern(visual_type, H, W, is_key=True)
# Generate corresponding value pattern
value_pattern = self._generate_visual_pattern(visual_type, H, W, is_key=False)
# Compute quality metrics
fidelity_psnr = self._compute_psnr(key_pattern, value_pattern)
orthogonality = self._compute_orthogonality(key_pattern.flatten(), value_pattern.flatten())
compressibility = self._compute_gzip_ratio(key_pattern)
sample = {
"id": f"visual_{visual_type}_{i:06d}",
"key_pattern": key_pattern.tolist(),
"value_pattern": value_pattern.tolist(),
"pattern_type": visual_type,
"H": H,
"W": W,
"fidelity_psnr": float(fidelity_psnr),
"orthogonality": float(orthogonality),
"compressibility": float(compressibility),
"category": "visual_memory",
# Consistent schema fields
"interference_rms": None,
"persistence_lambda": None,
"codebook_type": None,
"capacity_load": None,
"time_step": None,
"energy_retention": None,
"temporal_correlation": None,
"L": None,
"K": None,
"reconstruction_error": None,
"reconstructed_pattern": None,
"codebook_matrix": None
}
samples.append(sample)
return samples
def generate_synthetic_maps(self, num_samples: int = 3000, H: int = 64, W: int = 64) -> List[Dict]:
"""Generate synthetic spatial pattern mappings."""
samples = []
map_types = [
"gaussian_fields",
"spiral_patterns",
"frequency_domains",
"cellular_automata",
"fractal_structures",
"gradient_maps"
]
for i in range(num_samples):
map_type = random.choice(map_types)
# Generate synthetic key-value mapping
key_map = self._generate_synthetic_map(map_type, H, W, seed=i*2)
value_map = self._generate_synthetic_map(map_type, H, W, seed=i*2+1)
# Apply transformation relationship
value_map = self._apply_map_transform(key_map, value_map, map_type)
# Compute metrics
fidelity_psnr = self._compute_psnr(key_map, value_map)
orthogonality = self._compute_orthogonality(key_map.flatten(), value_map.flatten())
compressibility = self._compute_gzip_ratio(key_map)
sample = {
"id": f"synthetic_{map_type}_{i:06d}",
"key_pattern": key_map.tolist(),
"value_pattern": value_map.tolist(),
"pattern_type": map_type,
"H": H,
"W": W,
"fidelity_psnr": float(fidelity_psnr),
"orthogonality": float(orthogonality),
"compressibility": float(compressibility),
"category": "synthetic_maps",
# Consistent schema fields
"interference_rms": None,
"persistence_lambda": None,
"codebook_type": None,
"capacity_load": None,
"time_step": None,
"energy_retention": None,
"temporal_correlation": None,
"L": None,
"K": None,
"reconstruction_error": None,
"reconstructed_pattern": None,
"codebook_matrix": None
}
samples.append(sample)
return samples
def generate_interference_studies(self, num_samples: int = 2000, H: int = 64, W: int = 64) -> List[Dict]:
"""Generate data for studying memory interference and capacity limits."""
samples = []
# Test different capacity loads
capacity_loads = [0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]
for load in capacity_loads:
load_samples = int(num_samples * 0.14) # Distribute across loads
for i in range(load_samples):
# Generate multiple overlapping patterns to study interference
num_patterns = max(1, int(64 * load)) # Scale with capacity load
patterns = []
for p in range(min(num_patterns, 10)): # Limit for memory
pattern = np.random.randn(H, W).astype(np.float32)
pattern = (pattern - pattern.mean()) / pattern.std() # Normalize
patterns.append(pattern)
# Create composite pattern (sum of all patterns)
composite = np.sum(patterns, axis=0) / len(patterns)
target = patterns[0] if patterns else composite # Try to retrieve first pattern
# Compute interference metrics
interference_rms = self._compute_interference_rms(patterns, target)
fidelity_psnr = self._compute_psnr(composite, target)
orthogonality = self._compute_pattern_orthogonality(patterns)
sample = {
"id": f"interference_load_{load}_{i:06d}",
"key_pattern": composite.tolist(),
"value_pattern": target.tolist(),
"pattern_type": "interference_test",
"H": H,
"W": W,
"capacity_load": float(load),
"interference_rms": float(interference_rms),
"fidelity_psnr": float(fidelity_psnr),
"orthogonality": float(orthogonality),
"category": "interference_study",
# Consistent schema fields
"compressibility": None,
"persistence_lambda": None,
"codebook_type": None,
"time_step": None,
"energy_retention": None,
"temporal_correlation": None,
"L": None,
"K": None,
"reconstruction_error": None,
"reconstructed_pattern": None,
"codebook_matrix": None
}
samples.append(sample)
return samples
def generate_orthogonality_benchmarks(self, num_samples: int = 1500, L: int = 64, K: int = 64) -> List[Dict]:
"""Generate codebook optimization data for orthogonality studies."""
samples = []
codebook_types = [
"hadamard",
"random_orthogonal",
"dct_basis",
"wavelet_basis",
"learned_sparse"
]
for codebook_type in codebook_types:
type_samples = num_samples // len(codebook_types)
for i in range(type_samples):
# Generate codebook matrix C[L, K]
codebook = self._generate_codebook(codebook_type, L, K, seed=i)
# Test multiple read/write operations
H, W = 64, 64
test_key = np.random.randn(H, W).astype(np.float32)
test_value = np.random.randn(H, W).astype(np.float32)
# Simulate membrane write and read
written_membrane, read_result = self._simulate_membrane_operation(
codebook, test_key, test_value, H, W
)
# Compute orthogonality metrics
orthogonality = self._compute_codebook_orthogonality(codebook)
reconstruction_error = np.mean((test_value - read_result) ** 2)
sample = {
"id": f"orthogonal_{codebook_type}_{i:06d}",
"key_pattern": test_key.tolist(),
"value_pattern": test_value.tolist(),
"reconstructed_pattern": read_result.tolist(),
"codebook_matrix": codebook.tolist(),
"pattern_type": "orthogonality_test",
"codebook_type": codebook_type,
"H": H,
"W": W,
"L": L,
"K": K,
"orthogonality": float(orthogonality),
"reconstruction_error": float(reconstruction_error),
"category": "orthogonality_benchmark",
# Consistent schema fields
"fidelity_psnr": None,
"compressibility": None,
"interference_rms": None,
"persistence_lambda": None,
"capacity_load": None,
"time_step": None,
"energy_retention": None,
"temporal_correlation": None
}
samples.append(sample)
return samples
def generate_persistence_traces(self, num_samples: int = 1000, H: int = 64, W: int = 64) -> List[Dict]:
"""Generate temporal decay studies for persistence analysis."""
samples = []
# Test different decay rates
lambda_values = [0.95, 0.97, 0.98, 0.99, 0.995]
time_steps = [1, 5, 10, 20, 50, 100]
for lambda_val in lambda_values:
for time_step in time_steps:
step_samples = max(1, num_samples // (len(lambda_values) * len(time_steps)))
for i in range(step_samples):
# Generate initial pattern
initial_pattern = np.random.randn(H, W).astype(np.float32)
initial_pattern = (initial_pattern - initial_pattern.mean()) / initial_pattern.std()
# Simulate temporal decay: M_t+1 = Ξ» * M_t
decayed_pattern = initial_pattern * (lambda_val ** time_step)
# Add noise for realism
noise_level = 0.01 * (1 - lambda_val) # More noise for faster decay
noise = np.random.normal(0, noise_level, (H, W)).astype(np.float32)
decayed_pattern += noise
# Compute persistence metrics
energy_retention = np.mean(decayed_pattern ** 2) / np.mean(initial_pattern ** 2)
correlation = np.corrcoef(initial_pattern.flatten(), decayed_pattern.flatten())[0, 1]
sample = {
"id": f"persistence_l{lambda_val}_t{time_step}_{i:06d}",
"key_pattern": initial_pattern.tolist(),
"value_pattern": decayed_pattern.tolist(),
"pattern_type": "persistence_decay",
"persistence_lambda": float(lambda_val),
"time_step": int(time_step),
"H": H,
"W": W,
"energy_retention": float(energy_retention),
"temporal_correlation": float(correlation if not np.isnan(correlation) else 0.0),
"category": "persistence_trace",
# Consistent schema fields - set all to None for consistency
"fidelity_psnr": None,
"orthogonality": None,
"compressibility": None,
"interference_rms": None,
"codebook_type": None,
"capacity_load": None,
# Additional fields that other samples might have
"L": None,
"K": None,
"reconstruction_error": None,
"reconstructed_pattern": None,
"codebook_matrix": None
}
samples.append(sample)
return samples
def _generate_visual_pattern(self, pattern_type: str, H: int, W: int, is_key: bool = True) -> np.ndarray:
"""Generate visual patterns for different types."""
if pattern_type == "mnist_digits":
# Simple digit-like patterns
digit = random.randint(0, 9)
pattern = self._create_digit_pattern(digit, H, W)
if not is_key:
# For value, create slightly transformed version
pattern = self._apply_simple_transform(pattern, "rotate_small")
elif pattern_type == "geometric_shapes":
shape = random.choice(["circle", "square", "triangle", "cross"])
pattern = self._create_geometric_pattern(shape, H, W)
if not is_key:
pattern = self._apply_simple_transform(pattern, "scale")
elif pattern_type == "noise_patterns":
pattern = np.random.randn(H, W).astype(np.float32)
pattern = (pattern - pattern.mean()) / pattern.std()
if not is_key:
pattern = pattern + 0.1 * np.random.randn(H, W)
else:
# Default random pattern
pattern = np.random.uniform(-1, 1, (H, W)).astype(np.float32)
return pattern
def _generate_synthetic_map(self, map_type: str, H: int, W: int, seed: int) -> np.ndarray:
"""Generate synthetic spatial maps."""
np.random.seed(seed)
if map_type == "gaussian_fields":
# Random Gaussian field
x, y = np.meshgrid(np.linspace(-2, 2, W), np.linspace(-2, 2, H))
pattern = np.exp(-(x**2 + y**2) / (2 * (0.5 + random.random())**2))
elif map_type == "spiral_patterns":
# Spiral pattern
x, y = np.meshgrid(np.linspace(-np.pi, np.pi, W), np.linspace(-np.pi, np.pi, H))
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
pattern = np.sin(r * 3 + theta * random.randint(1, 5))
elif map_type == "frequency_domains":
# Frequency domain pattern
freq_x, freq_y = random.randint(1, 8), random.randint(1, 8)
x, y = np.meshgrid(np.linspace(0, 2*np.pi, W), np.linspace(0, 2*np.pi, H))
pattern = np.sin(freq_x * x) * np.cos(freq_y * y)
else:
# Default random field
pattern = np.random.randn(H, W)
# Normalize
pattern = (pattern - pattern.mean()) / (pattern.std() + 1e-7)
return pattern.astype(np.float32)
def _create_digit_pattern(self, digit: int, H: int, W: int) -> np.ndarray:
"""Create simple digit-like pattern."""
pattern = np.zeros((H, W), dtype=np.float32)
# Simple digit patterns
h_center, w_center = H // 2, W // 2
size = min(H, W) // 3
if digit in [0, 6, 8, 9]:
# Draw circle/oval
y, x = np.ogrid[:H, :W]
mask = ((x - w_center) ** 2 / size**2 + (y - h_center) ** 2 / size**2) <= 1
pattern[mask] = 1.0
if digit in [1, 4, 7]:
# Draw vertical line
pattern[h_center-size:h_center+size, w_center-2:w_center+2] = 1.0
# Add some randomization
noise = 0.1 * np.random.randn(H, W)
pattern = np.clip(pattern + noise, -1, 1)
return pattern
def _create_geometric_pattern(self, shape: str, H: int, W: int) -> np.ndarray:
"""Create geometric shape patterns."""
pattern = np.zeros((H, W), dtype=np.float32)
center_h, center_w = H // 2, W // 2
size = min(H, W) // 4
if shape == "circle":
y, x = np.ogrid[:H, :W]
mask = ((x - center_w) ** 2 + (y - center_h) ** 2) <= size**2
pattern[mask] = 1.0
elif shape == "square":
pattern[center_h-size:center_h+size, center_w-size:center_w+size] = 1.0
elif shape == "cross":
pattern[center_h-size:center_h+size, center_w-3:center_w+3] = 1.0
pattern[center_h-3:center_h+3, center_w-size:center_w+size] = 1.0
return pattern
def _apply_simple_transform(self, pattern: np.ndarray, transform: str) -> np.ndarray:
"""Apply simple transformations to patterns."""
if transform == "rotate_small":
# Small rotation (simplified)
return np.roll(pattern, random.randint(-2, 2), axis=random.randint(0, 1))
elif transform == "scale":
# Simple scaling via interpolation approximation
return pattern * (0.8 + 0.4 * random.random())
else:
return pattern
def _apply_map_transform(self, key_map: np.ndarray, value_map: np.ndarray, map_type: str) -> np.ndarray:
"""Apply transformation relationship between key and value maps."""
if map_type == "gaussian_fields":
# Value is blurred version of key
return 0.7 * key_map + 0.3 * value_map
elif map_type == "spiral_patterns":
# Value is phase-shifted version
return np.roll(key_map, random.randint(-3, 3), axis=1)
else:
# Default: slightly correlated
return 0.8 * key_map + 0.2 * value_map
def _compute_psnr(self, pattern1: np.ndarray, pattern2: np.ndarray) -> float:
"""Compute Peak Signal-to-Noise Ratio."""
mse = np.mean((pattern1 - pattern2) ** 2)
if mse == 0:
return float('inf')
max_val = max(np.max(pattern1), np.max(pattern2))
psnr = 20 * np.log10(max_val / np.sqrt(mse))
return psnr
def _compute_orthogonality(self, vec1: np.ndarray, vec2: np.ndarray) -> float:
"""Compute orthogonality score between two vectors."""
vec1_norm = vec1 / (np.linalg.norm(vec1) + 1e-7)
vec2_norm = vec2 / (np.linalg.norm(vec2) + 1e-7)
dot_product = np.abs(np.dot(vec1_norm, vec2_norm))
orthogonality = 1.0 - dot_product # 1 = orthogonal, 0 = parallel
return orthogonality
def _compute_gzip_ratio(self, pattern: np.ndarray) -> float:
"""Compute compressibility using gzip ratio."""
# Convert to bytes
pattern_bytes = (pattern * 255).astype(np.uint8).tobytes()
compressed = gzip.compress(pattern_bytes)
ratio = len(compressed) / len(pattern_bytes)
return ratio
def _compute_interference_rms(self, patterns: List[np.ndarray], target: np.ndarray) -> float:
"""Compute RMS interference from multiple patterns."""
if not patterns:
return 0.0
# Sum all patterns except target
interference = np.zeros_like(target)
for p in patterns[1:]: # Skip first pattern (target)
interference += p
rms = np.sqrt(np.mean(interference ** 2))
return rms
def _compute_pattern_orthogonality(self, patterns: List[np.ndarray]) -> float:
"""Compute average orthogonality between patterns."""
if len(patterns) < 2:
return 1.0
orthogonalities = []
for i in range(len(patterns)):
for j in range(i + 1, min(i + 5, len(patterns))): # Limit comparisons
orth = self._compute_orthogonality(patterns[i].flatten(), patterns[j].flatten())
orthogonalities.append(orth)
return np.mean(orthogonalities) if orthogonalities else 1.0
def _generate_codebook(self, codebook_type: str, L: int, K: int, seed: int) -> np.ndarray:
"""Generate codebook matrix for different types."""
np.random.seed(seed)
if codebook_type == "hadamard" and L <= 64 and K <= 64:
# Simple Hadamard-like matrix (for small sizes)
codebook = np.random.choice([-1, 1], size=(L, K))
elif codebook_type == "random_orthogonal":
# Random orthogonal matrix
random_matrix = np.random.randn(L, K)
if L >= K:
q, _ = np.linalg.qr(random_matrix)
codebook = q[:, :K]
else:
codebook = random_matrix
else:
# Default random matrix
codebook = np.random.randn(L, K) / np.sqrt(L)
return codebook.astype(np.float32)
def _simulate_membrane_operation(self, codebook: np.ndarray, key: np.ndarray,
value: np.ndarray, H: int, W: int) -> Tuple[np.ndarray, np.ndarray]:
"""Simulate membrane write and read operation."""
L, K = codebook.shape
# Simulate write: M += alpha * C[:, k] βŠ— V
# For simplicity, use first codebook column
alpha = 1.0
membrane = np.zeros((L, H, W))
# Write operation (simplified)
for l in range(min(L, 16)): # Limit for memory
membrane[l] = codebook[l, 0] * value
# Read operation: Y = ReLU(einsum('lhw,lk->khw', M, C))
# Simplified readout
read_result = np.zeros((H, W))
for l in range(min(L, 16)):
read_result += codebook[l, 0] * membrane[l]
# Apply ReLU
read_result = np.maximum(0, read_result)
return membrane, read_result.astype(np.float32)
def _compute_codebook_orthogonality(self, codebook: np.ndarray) -> float:
"""Compute orthogonality measure of codebook."""
# Compute Gram matrix G = C^T C
gram = codebook.T @ codebook
# Orthogonality measure: how close to identity matrix
identity = np.eye(gram.shape[0])
frobenius_dist = np.linalg.norm(gram - identity, 'fro')
# Normalize by matrix size
orthogonality = 1.0 / (1.0 + frobenius_dist / gram.shape[0])
return orthogonality
def build_complete_dataset(self) -> DatasetDict:
"""Build the complete WrinkleBrane dataset."""
print("🧠 Building WrinkleBrane Dataset...")
all_samples = []
# 1. Visual memory pairs (40% of dataset)
print("πŸ‘οΈ Generating visual memory pairs...")
visual_samples = self.generate_visual_memory_pairs(8000)
all_samples.extend(visual_samples)
# 2. Synthetic maps (25% of dataset)
print("πŸ—ΊοΈ Generating synthetic maps...")
map_samples = self.generate_synthetic_maps(5000)
all_samples.extend(map_samples)
# 3. Interference studies (20% of dataset)
print("⚑ Generating interference studies...")
interference_samples = self.generate_interference_studies(4000)
all_samples.extend(interference_samples)
# 4. Orthogonality benchmarks (10% of dataset)
print("πŸ“ Generating orthogonality benchmarks...")
orthogonal_samples = self.generate_orthogonality_benchmarks(2000)
all_samples.extend(orthogonal_samples)
# 5. Persistence traces (5% of dataset)
print("⏰ Generating persistence traces...")
persistence_samples = self.generate_persistence_traces(1000)
all_samples.extend(persistence_samples)
# Split into train/validation/test
random.shuffle(all_samples)
total = len(all_samples)
train_split = int(0.8 * total)
val_split = int(0.9 * total)
train_data = all_samples[:train_split]
val_data = all_samples[train_split:val_split]
test_data = all_samples[val_split:]
# Create HuggingFace datasets
dataset_dict = DatasetDict({
'train': Dataset.from_list(train_data),
'validation': Dataset.from_list(val_data),
'test': Dataset.from_list(test_data)
})
print(f"βœ… Dataset built: {len(train_data)} train, {len(val_data)} val, {len(test_data)} test")
return dataset_dict
def upload_to_huggingface(self, dataset: DatasetDict, private: bool = True) -> str:
"""Upload dataset to HuggingFace Hub."""
print(f"🌐 Uploading to HuggingFace: {self.repo_id}")
try:
# Create repository
create_repo(
repo_id=self.repo_id,
repo_type="dataset",
private=private,
exist_ok=True,
token=self.hf_token
)
# Add dataset metadata
dataset_info = {
"dataset_info": self.config,
"splits": {
"train": len(dataset["train"]),
"validation": len(dataset["validation"]),
"test": len(dataset["test"])
},
"features": {
"id": "string",
"key_pattern": "2D array of floats (H x W)",
"value_pattern": "2D array of floats (H x W)",
"pattern_type": "string",
"H": "integer (height)",
"W": "integer (width)",
"category": "string",
"optional_metrics": "various floats for specific sample types"
},
"usage_notes": [
"Optimized for WrinkleBrane associative memory training",
"Key-value pairs for membrane storage and retrieval",
"Includes interference studies and capacity analysis",
"Supports orthogonality optimization research"
]
}
# Push dataset with metadata
dataset.push_to_hub(
repo_id=self.repo_id,
token=self.hf_token,
private=private
)
# Upload additional metadata
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(dataset_info, f, indent=2)
self.api.upload_file(
path_or_fileobj=f.name,
path_in_repo="dataset_info.json",
repo_id=self.repo_id,
repo_type="dataset",
token=self.hf_token
)
print(f"βœ… Dataset uploaded successfully to: https://huggingface.co/datasets/{self.repo_id}")
return f"https://huggingface.co/datasets/{self.repo_id}"
except Exception as e:
print(f"❌ Upload failed: {e}")
raise
def create_wrinklebrane_dataset(hf_token: str, repo_id: str = "WrinkleBrane") -> str:
"""
Convenience function to create and upload WrinkleBrane dataset.
Args:
hf_token: HuggingFace access token
repo_id: Dataset repository ID
Returns:
URL to the uploaded dataset
"""
builder = WrinkleBraneDatasetBuilder(hf_token, repo_id)
dataset = builder.build_complete_dataset()
return builder.upload_to_huggingface(dataset, private=True)