Clear existing file: wrinklebrane_dataset_builder.py
Browse files- wrinklebrane_dataset_builder.py +0 -723
wrinklebrane_dataset_builder.py
DELETED
|
@@ -1,723 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
WrinkleBrane Dataset Builder & HuggingFace Integration
|
| 3 |
-
|
| 4 |
-
Creates curated datasets optimized for associative memory training with
|
| 5 |
-
membrane storage, interference studies, and orthogonality benchmarks.
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import json
|
| 10 |
-
import gzip
|
| 11 |
-
import random
|
| 12 |
-
import math
|
| 13 |
-
from typing import List, Dict, Any, Optional, Tuple, Union
|
| 14 |
-
from pathlib import Path
|
| 15 |
-
from datetime import datetime
|
| 16 |
-
import tempfile
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
import numpy as np
|
| 20 |
-
from datasets import Dataset, DatasetDict
|
| 21 |
-
from huggingface_hub import HfApi, login, create_repo
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
class WrinkleBraneDatasetBuilder:
|
| 25 |
-
"""
|
| 26 |
-
Comprehensive dataset builder for WrinkleBrane associative memory training.
|
| 27 |
-
|
| 28 |
-
Generates:
|
| 29 |
-
- Key-value pairs for associative memory tasks
|
| 30 |
-
- Visual patterns (MNIST-style, geometric shapes)
|
| 31 |
-
- Interference benchmark sequences
|
| 32 |
-
- Orthogonality optimization data
|
| 33 |
-
- Persistence decay studies
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
def __init__(self, hf_token: str, repo_id: str = "WrinkleBrane"):
|
| 37 |
-
"""Initialize with HuggingFace credentials."""
|
| 38 |
-
self.hf_token = hf_token
|
| 39 |
-
self.repo_id = repo_id
|
| 40 |
-
self.api = HfApi()
|
| 41 |
-
|
| 42 |
-
# Login to HuggingFace
|
| 43 |
-
login(token=hf_token)
|
| 44 |
-
|
| 45 |
-
# Dataset configuration
|
| 46 |
-
self.config = {
|
| 47 |
-
"version": "1.0.0",
|
| 48 |
-
"created": datetime.now().isoformat(),
|
| 49 |
-
"model_compatibility": "WrinkleBrane",
|
| 50 |
-
"membrane_encoding": "2D_spatial_maps",
|
| 51 |
-
"default_H": 64,
|
| 52 |
-
"default_W": 64,
|
| 53 |
-
"default_L": 64, # membrane layers
|
| 54 |
-
"default_K": 64, # codebook size
|
| 55 |
-
"total_samples": 20000,
|
| 56 |
-
"quality_thresholds": {
|
| 57 |
-
"min_fidelity_psnr": 20.0,
|
| 58 |
-
"max_interference_rms": 0.1,
|
| 59 |
-
"min_orthogonality": 0.8
|
| 60 |
-
}
|
| 61 |
-
}
|
| 62 |
-
|
| 63 |
-
def generate_visual_memory_pairs(self, num_samples: int = 5000, H: int = 64, W: int = 64) -> List[Dict]:
|
| 64 |
-
"""Generate visual key-value pairs for associative memory."""
|
| 65 |
-
samples = []
|
| 66 |
-
|
| 67 |
-
visual_types = [
|
| 68 |
-
"mnist_digits",
|
| 69 |
-
"geometric_shapes",
|
| 70 |
-
"noise_patterns",
|
| 71 |
-
"edge_features",
|
| 72 |
-
"texture_patches",
|
| 73 |
-
"sparse_dots"
|
| 74 |
-
]
|
| 75 |
-
|
| 76 |
-
for i in range(num_samples):
|
| 77 |
-
visual_type = random.choice(visual_types)
|
| 78 |
-
|
| 79 |
-
# Generate key pattern
|
| 80 |
-
key_pattern = self._generate_visual_pattern(visual_type, H, W, is_key=True)
|
| 81 |
-
|
| 82 |
-
# Generate corresponding value pattern
|
| 83 |
-
value_pattern = self._generate_visual_pattern(visual_type, H, W, is_key=False)
|
| 84 |
-
|
| 85 |
-
# Compute quality metrics
|
| 86 |
-
fidelity_psnr = self._compute_psnr(key_pattern, value_pattern)
|
| 87 |
-
orthogonality = self._compute_orthogonality(key_pattern.flatten(), value_pattern.flatten())
|
| 88 |
-
compressibility = self._compute_gzip_ratio(key_pattern)
|
| 89 |
-
|
| 90 |
-
sample = {
|
| 91 |
-
"id": f"visual_{visual_type}_{i:06d}",
|
| 92 |
-
"key_pattern": key_pattern.tolist(),
|
| 93 |
-
"value_pattern": value_pattern.tolist(),
|
| 94 |
-
"pattern_type": visual_type,
|
| 95 |
-
"H": H,
|
| 96 |
-
"W": W,
|
| 97 |
-
"fidelity_psnr": float(fidelity_psnr),
|
| 98 |
-
"orthogonality": float(orthogonality),
|
| 99 |
-
"compressibility": float(compressibility),
|
| 100 |
-
"category": "visual_memory",
|
| 101 |
-
# Consistent schema fields
|
| 102 |
-
"interference_rms": None,
|
| 103 |
-
"persistence_lambda": None,
|
| 104 |
-
"codebook_type": None,
|
| 105 |
-
"capacity_load": None,
|
| 106 |
-
"time_step": None,
|
| 107 |
-
"energy_retention": None,
|
| 108 |
-
"temporal_correlation": None,
|
| 109 |
-
"L": None,
|
| 110 |
-
"K": None,
|
| 111 |
-
"reconstruction_error": None,
|
| 112 |
-
"reconstructed_pattern": None,
|
| 113 |
-
"codebook_matrix": None
|
| 114 |
-
}
|
| 115 |
-
samples.append(sample)
|
| 116 |
-
|
| 117 |
-
return samples
|
| 118 |
-
|
| 119 |
-
def generate_synthetic_maps(self, num_samples: int = 3000, H: int = 64, W: int = 64) -> List[Dict]:
|
| 120 |
-
"""Generate synthetic spatial pattern mappings."""
|
| 121 |
-
samples = []
|
| 122 |
-
|
| 123 |
-
map_types = [
|
| 124 |
-
"gaussian_fields",
|
| 125 |
-
"spiral_patterns",
|
| 126 |
-
"frequency_domains",
|
| 127 |
-
"cellular_automata",
|
| 128 |
-
"fractal_structures",
|
| 129 |
-
"gradient_maps"
|
| 130 |
-
]
|
| 131 |
-
|
| 132 |
-
for i in range(num_samples):
|
| 133 |
-
map_type = random.choice(map_types)
|
| 134 |
-
|
| 135 |
-
# Generate synthetic key-value mapping
|
| 136 |
-
key_map = self._generate_synthetic_map(map_type, H, W, seed=i*2)
|
| 137 |
-
value_map = self._generate_synthetic_map(map_type, H, W, seed=i*2+1)
|
| 138 |
-
|
| 139 |
-
# Apply transformation relationship
|
| 140 |
-
value_map = self._apply_map_transform(key_map, value_map, map_type)
|
| 141 |
-
|
| 142 |
-
# Compute metrics
|
| 143 |
-
fidelity_psnr = self._compute_psnr(key_map, value_map)
|
| 144 |
-
orthogonality = self._compute_orthogonality(key_map.flatten(), value_map.flatten())
|
| 145 |
-
compressibility = self._compute_gzip_ratio(key_map)
|
| 146 |
-
|
| 147 |
-
sample = {
|
| 148 |
-
"id": f"synthetic_{map_type}_{i:06d}",
|
| 149 |
-
"key_pattern": key_map.tolist(),
|
| 150 |
-
"value_pattern": value_map.tolist(),
|
| 151 |
-
"pattern_type": map_type,
|
| 152 |
-
"H": H,
|
| 153 |
-
"W": W,
|
| 154 |
-
"fidelity_psnr": float(fidelity_psnr),
|
| 155 |
-
"orthogonality": float(orthogonality),
|
| 156 |
-
"compressibility": float(compressibility),
|
| 157 |
-
"category": "synthetic_maps",
|
| 158 |
-
# Consistent schema fields
|
| 159 |
-
"interference_rms": None,
|
| 160 |
-
"persistence_lambda": None,
|
| 161 |
-
"codebook_type": None,
|
| 162 |
-
"capacity_load": None,
|
| 163 |
-
"time_step": None,
|
| 164 |
-
"energy_retention": None,
|
| 165 |
-
"temporal_correlation": None,
|
| 166 |
-
"L": None,
|
| 167 |
-
"K": None,
|
| 168 |
-
"reconstruction_error": None,
|
| 169 |
-
"reconstructed_pattern": None,
|
| 170 |
-
"codebook_matrix": None
|
| 171 |
-
}
|
| 172 |
-
samples.append(sample)
|
| 173 |
-
|
| 174 |
-
return samples
|
| 175 |
-
|
| 176 |
-
def generate_interference_studies(self, num_samples: int = 2000, H: int = 64, W: int = 64) -> List[Dict]:
|
| 177 |
-
"""Generate data for studying memory interference and capacity limits."""
|
| 178 |
-
samples = []
|
| 179 |
-
|
| 180 |
-
# Test different capacity loads
|
| 181 |
-
capacity_loads = [0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]
|
| 182 |
-
|
| 183 |
-
for load in capacity_loads:
|
| 184 |
-
load_samples = int(num_samples * 0.14) # Distribute across loads
|
| 185 |
-
|
| 186 |
-
for i in range(load_samples):
|
| 187 |
-
# Generate multiple overlapping patterns to study interference
|
| 188 |
-
num_patterns = max(1, int(64 * load)) # Scale with capacity load
|
| 189 |
-
|
| 190 |
-
patterns = []
|
| 191 |
-
for p in range(min(num_patterns, 10)): # Limit for memory
|
| 192 |
-
pattern = np.random.randn(H, W).astype(np.float32)
|
| 193 |
-
pattern = (pattern - pattern.mean()) / pattern.std() # Normalize
|
| 194 |
-
patterns.append(pattern)
|
| 195 |
-
|
| 196 |
-
# Create composite pattern (sum of all patterns)
|
| 197 |
-
composite = np.sum(patterns, axis=0) / len(patterns)
|
| 198 |
-
target = patterns[0] if patterns else composite # Try to retrieve first pattern
|
| 199 |
-
|
| 200 |
-
# Compute interference metrics
|
| 201 |
-
interference_rms = self._compute_interference_rms(patterns, target)
|
| 202 |
-
fidelity_psnr = self._compute_psnr(composite, target)
|
| 203 |
-
orthogonality = self._compute_pattern_orthogonality(patterns)
|
| 204 |
-
|
| 205 |
-
sample = {
|
| 206 |
-
"id": f"interference_load_{load}_{i:06d}",
|
| 207 |
-
"key_pattern": composite.tolist(),
|
| 208 |
-
"value_pattern": target.tolist(),
|
| 209 |
-
"pattern_type": "interference_test",
|
| 210 |
-
"H": H,
|
| 211 |
-
"W": W,
|
| 212 |
-
"capacity_load": float(load),
|
| 213 |
-
"interference_rms": float(interference_rms),
|
| 214 |
-
"fidelity_psnr": float(fidelity_psnr),
|
| 215 |
-
"orthogonality": float(orthogonality),
|
| 216 |
-
"category": "interference_study",
|
| 217 |
-
# Consistent schema fields
|
| 218 |
-
"compressibility": None,
|
| 219 |
-
"persistence_lambda": None,
|
| 220 |
-
"codebook_type": None,
|
| 221 |
-
"time_step": None,
|
| 222 |
-
"energy_retention": None,
|
| 223 |
-
"temporal_correlation": None,
|
| 224 |
-
"L": None,
|
| 225 |
-
"K": None,
|
| 226 |
-
"reconstruction_error": None,
|
| 227 |
-
"reconstructed_pattern": None,
|
| 228 |
-
"codebook_matrix": None
|
| 229 |
-
}
|
| 230 |
-
samples.append(sample)
|
| 231 |
-
|
| 232 |
-
return samples
|
| 233 |
-
|
| 234 |
-
def generate_orthogonality_benchmarks(self, num_samples: int = 1500, L: int = 64, K: int = 64) -> List[Dict]:
|
| 235 |
-
"""Generate codebook optimization data for orthogonality studies."""
|
| 236 |
-
samples = []
|
| 237 |
-
|
| 238 |
-
codebook_types = [
|
| 239 |
-
"hadamard",
|
| 240 |
-
"random_orthogonal",
|
| 241 |
-
"dct_basis",
|
| 242 |
-
"wavelet_basis",
|
| 243 |
-
"learned_sparse"
|
| 244 |
-
]
|
| 245 |
-
|
| 246 |
-
for codebook_type in codebook_types:
|
| 247 |
-
type_samples = num_samples // len(codebook_types)
|
| 248 |
-
|
| 249 |
-
for i in range(type_samples):
|
| 250 |
-
# Generate codebook matrix C[L, K]
|
| 251 |
-
codebook = self._generate_codebook(codebook_type, L, K, seed=i)
|
| 252 |
-
|
| 253 |
-
# Test multiple read/write operations
|
| 254 |
-
H, W = 64, 64
|
| 255 |
-
test_key = np.random.randn(H, W).astype(np.float32)
|
| 256 |
-
test_value = np.random.randn(H, W).astype(np.float32)
|
| 257 |
-
|
| 258 |
-
# Simulate membrane write and read
|
| 259 |
-
written_membrane, read_result = self._simulate_membrane_operation(
|
| 260 |
-
codebook, test_key, test_value, H, W
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
-
# Compute orthogonality metrics
|
| 264 |
-
orthogonality = self._compute_codebook_orthogonality(codebook)
|
| 265 |
-
reconstruction_error = np.mean((test_value - read_result) ** 2)
|
| 266 |
-
|
| 267 |
-
sample = {
|
| 268 |
-
"id": f"orthogonal_{codebook_type}_{i:06d}",
|
| 269 |
-
"key_pattern": test_key.tolist(),
|
| 270 |
-
"value_pattern": test_value.tolist(),
|
| 271 |
-
"reconstructed_pattern": read_result.tolist(),
|
| 272 |
-
"codebook_matrix": codebook.tolist(),
|
| 273 |
-
"pattern_type": "orthogonality_test",
|
| 274 |
-
"codebook_type": codebook_type,
|
| 275 |
-
"H": H,
|
| 276 |
-
"W": W,
|
| 277 |
-
"L": L,
|
| 278 |
-
"K": K,
|
| 279 |
-
"orthogonality": float(orthogonality),
|
| 280 |
-
"reconstruction_error": float(reconstruction_error),
|
| 281 |
-
"category": "orthogonality_benchmark",
|
| 282 |
-
# Consistent schema fields
|
| 283 |
-
"fidelity_psnr": None,
|
| 284 |
-
"compressibility": None,
|
| 285 |
-
"interference_rms": None,
|
| 286 |
-
"persistence_lambda": None,
|
| 287 |
-
"capacity_load": None,
|
| 288 |
-
"time_step": None,
|
| 289 |
-
"energy_retention": None,
|
| 290 |
-
"temporal_correlation": None
|
| 291 |
-
}
|
| 292 |
-
samples.append(sample)
|
| 293 |
-
|
| 294 |
-
return samples
|
| 295 |
-
|
| 296 |
-
def generate_persistence_traces(self, num_samples: int = 1000, H: int = 64, W: int = 64) -> List[Dict]:
|
| 297 |
-
"""Generate temporal decay studies for persistence analysis."""
|
| 298 |
-
samples = []
|
| 299 |
-
|
| 300 |
-
# Test different decay rates
|
| 301 |
-
lambda_values = [0.95, 0.97, 0.98, 0.99, 0.995]
|
| 302 |
-
time_steps = [1, 5, 10, 20, 50, 100]
|
| 303 |
-
|
| 304 |
-
for lambda_val in lambda_values:
|
| 305 |
-
for time_step in time_steps:
|
| 306 |
-
step_samples = max(1, num_samples // (len(lambda_values) * len(time_steps)))
|
| 307 |
-
|
| 308 |
-
for i in range(step_samples):
|
| 309 |
-
# Generate initial pattern
|
| 310 |
-
initial_pattern = np.random.randn(H, W).astype(np.float32)
|
| 311 |
-
initial_pattern = (initial_pattern - initial_pattern.mean()) / initial_pattern.std()
|
| 312 |
-
|
| 313 |
-
# Simulate temporal decay: M_t+1 = λ * M_t
|
| 314 |
-
decayed_pattern = initial_pattern * (lambda_val ** time_step)
|
| 315 |
-
|
| 316 |
-
# Add noise for realism
|
| 317 |
-
noise_level = 0.01 * (1 - lambda_val) # More noise for faster decay
|
| 318 |
-
noise = np.random.normal(0, noise_level, (H, W)).astype(np.float32)
|
| 319 |
-
decayed_pattern += noise
|
| 320 |
-
|
| 321 |
-
# Compute persistence metrics
|
| 322 |
-
energy_retention = np.mean(decayed_pattern ** 2) / np.mean(initial_pattern ** 2)
|
| 323 |
-
correlation = np.corrcoef(initial_pattern.flatten(), decayed_pattern.flatten())[0, 1]
|
| 324 |
-
|
| 325 |
-
sample = {
|
| 326 |
-
"id": f"persistence_l{lambda_val}_t{time_step}_{i:06d}",
|
| 327 |
-
"key_pattern": initial_pattern.tolist(),
|
| 328 |
-
"value_pattern": decayed_pattern.tolist(),
|
| 329 |
-
"pattern_type": "persistence_decay",
|
| 330 |
-
"persistence_lambda": float(lambda_val),
|
| 331 |
-
"time_step": int(time_step),
|
| 332 |
-
"H": H,
|
| 333 |
-
"W": W,
|
| 334 |
-
"energy_retention": float(energy_retention),
|
| 335 |
-
"temporal_correlation": float(correlation if not np.isnan(correlation) else 0.0),
|
| 336 |
-
"category": "persistence_trace",
|
| 337 |
-
# Consistent schema fields - set all to None for consistency
|
| 338 |
-
"fidelity_psnr": None,
|
| 339 |
-
"orthogonality": None,
|
| 340 |
-
"compressibility": None,
|
| 341 |
-
"interference_rms": None,
|
| 342 |
-
"codebook_type": None,
|
| 343 |
-
"capacity_load": None,
|
| 344 |
-
# Additional fields that other samples might have
|
| 345 |
-
"L": None,
|
| 346 |
-
"K": None,
|
| 347 |
-
"reconstruction_error": None,
|
| 348 |
-
"reconstructed_pattern": None,
|
| 349 |
-
"codebook_matrix": None
|
| 350 |
-
}
|
| 351 |
-
samples.append(sample)
|
| 352 |
-
|
| 353 |
-
return samples
|
| 354 |
-
|
| 355 |
-
def _generate_visual_pattern(self, pattern_type: str, H: int, W: int, is_key: bool = True) -> np.ndarray:
|
| 356 |
-
"""Generate visual patterns for different types."""
|
| 357 |
-
if pattern_type == "mnist_digits":
|
| 358 |
-
# Simple digit-like patterns
|
| 359 |
-
digit = random.randint(0, 9)
|
| 360 |
-
pattern = self._create_digit_pattern(digit, H, W)
|
| 361 |
-
if not is_key:
|
| 362 |
-
# For value, create slightly transformed version
|
| 363 |
-
pattern = self._apply_simple_transform(pattern, "rotate_small")
|
| 364 |
-
|
| 365 |
-
elif pattern_type == "geometric_shapes":
|
| 366 |
-
shape = random.choice(["circle", "square", "triangle", "cross"])
|
| 367 |
-
pattern = self._create_geometric_pattern(shape, H, W)
|
| 368 |
-
if not is_key:
|
| 369 |
-
pattern = self._apply_simple_transform(pattern, "scale")
|
| 370 |
-
|
| 371 |
-
elif pattern_type == "noise_patterns":
|
| 372 |
-
pattern = np.random.randn(H, W).astype(np.float32)
|
| 373 |
-
pattern = (pattern - pattern.mean()) / pattern.std()
|
| 374 |
-
if not is_key:
|
| 375 |
-
pattern = pattern + 0.1 * np.random.randn(H, W)
|
| 376 |
-
|
| 377 |
-
else:
|
| 378 |
-
# Default random pattern
|
| 379 |
-
pattern = np.random.uniform(-1, 1, (H, W)).astype(np.float32)
|
| 380 |
-
|
| 381 |
-
return pattern
|
| 382 |
-
|
| 383 |
-
def _generate_synthetic_map(self, map_type: str, H: int, W: int, seed: int) -> np.ndarray:
|
| 384 |
-
"""Generate synthetic spatial maps."""
|
| 385 |
-
np.random.seed(seed)
|
| 386 |
-
|
| 387 |
-
if map_type == "gaussian_fields":
|
| 388 |
-
# Random Gaussian field
|
| 389 |
-
x, y = np.meshgrid(np.linspace(-2, 2, W), np.linspace(-2, 2, H))
|
| 390 |
-
pattern = np.exp(-(x**2 + y**2) / (2 * (0.5 + random.random())**2))
|
| 391 |
-
|
| 392 |
-
elif map_type == "spiral_patterns":
|
| 393 |
-
# Spiral pattern
|
| 394 |
-
x, y = np.meshgrid(np.linspace(-np.pi, np.pi, W), np.linspace(-np.pi, np.pi, H))
|
| 395 |
-
r = np.sqrt(x**2 + y**2)
|
| 396 |
-
theta = np.arctan2(y, x)
|
| 397 |
-
pattern = np.sin(r * 3 + theta * random.randint(1, 5))
|
| 398 |
-
|
| 399 |
-
elif map_type == "frequency_domains":
|
| 400 |
-
# Frequency domain pattern
|
| 401 |
-
freq_x, freq_y = random.randint(1, 8), random.randint(1, 8)
|
| 402 |
-
x, y = np.meshgrid(np.linspace(0, 2*np.pi, W), np.linspace(0, 2*np.pi, H))
|
| 403 |
-
pattern = np.sin(freq_x * x) * np.cos(freq_y * y)
|
| 404 |
-
|
| 405 |
-
else:
|
| 406 |
-
# Default random field
|
| 407 |
-
pattern = np.random.randn(H, W)
|
| 408 |
-
|
| 409 |
-
# Normalize
|
| 410 |
-
pattern = (pattern - pattern.mean()) / (pattern.std() + 1e-7)
|
| 411 |
-
return pattern.astype(np.float32)
|
| 412 |
-
|
| 413 |
-
def _create_digit_pattern(self, digit: int, H: int, W: int) -> np.ndarray:
|
| 414 |
-
"""Create simple digit-like pattern."""
|
| 415 |
-
pattern = np.zeros((H, W), dtype=np.float32)
|
| 416 |
-
|
| 417 |
-
# Simple digit patterns
|
| 418 |
-
h_center, w_center = H // 2, W // 2
|
| 419 |
-
size = min(H, W) // 3
|
| 420 |
-
|
| 421 |
-
if digit in [0, 6, 8, 9]:
|
| 422 |
-
# Draw circle/oval
|
| 423 |
-
y, x = np.ogrid[:H, :W]
|
| 424 |
-
mask = ((x - w_center) ** 2 / size**2 + (y - h_center) ** 2 / size**2) <= 1
|
| 425 |
-
pattern[mask] = 1.0
|
| 426 |
-
|
| 427 |
-
if digit in [1, 4, 7]:
|
| 428 |
-
# Draw vertical line
|
| 429 |
-
pattern[h_center-size:h_center+size, w_center-2:w_center+2] = 1.0
|
| 430 |
-
|
| 431 |
-
# Add some randomization
|
| 432 |
-
noise = 0.1 * np.random.randn(H, W)
|
| 433 |
-
pattern = np.clip(pattern + noise, -1, 1)
|
| 434 |
-
|
| 435 |
-
return pattern
|
| 436 |
-
|
| 437 |
-
def _create_geometric_pattern(self, shape: str, H: int, W: int) -> np.ndarray:
|
| 438 |
-
"""Create geometric shape patterns."""
|
| 439 |
-
pattern = np.zeros((H, W), dtype=np.float32)
|
| 440 |
-
center_h, center_w = H // 2, W // 2
|
| 441 |
-
size = min(H, W) // 4
|
| 442 |
-
|
| 443 |
-
if shape == "circle":
|
| 444 |
-
y, x = np.ogrid[:H, :W]
|
| 445 |
-
mask = ((x - center_w) ** 2 + (y - center_h) ** 2) <= size**2
|
| 446 |
-
pattern[mask] = 1.0
|
| 447 |
-
|
| 448 |
-
elif shape == "square":
|
| 449 |
-
pattern[center_h-size:center_h+size, center_w-size:center_w+size] = 1.0
|
| 450 |
-
|
| 451 |
-
elif shape == "cross":
|
| 452 |
-
pattern[center_h-size:center_h+size, center_w-3:center_w+3] = 1.0
|
| 453 |
-
pattern[center_h-3:center_h+3, center_w-size:center_w+size] = 1.0
|
| 454 |
-
|
| 455 |
-
return pattern
|
| 456 |
-
|
| 457 |
-
def _apply_simple_transform(self, pattern: np.ndarray, transform: str) -> np.ndarray:
|
| 458 |
-
"""Apply simple transformations to patterns."""
|
| 459 |
-
if transform == "rotate_small":
|
| 460 |
-
# Small rotation (simplified)
|
| 461 |
-
return np.roll(pattern, random.randint(-2, 2), axis=random.randint(0, 1))
|
| 462 |
-
elif transform == "scale":
|
| 463 |
-
# Simple scaling via interpolation approximation
|
| 464 |
-
return pattern * (0.8 + 0.4 * random.random())
|
| 465 |
-
else:
|
| 466 |
-
return pattern
|
| 467 |
-
|
| 468 |
-
def _apply_map_transform(self, key_map: np.ndarray, value_map: np.ndarray, map_type: str) -> np.ndarray:
|
| 469 |
-
"""Apply transformation relationship between key and value maps."""
|
| 470 |
-
if map_type == "gaussian_fields":
|
| 471 |
-
# Value is blurred version of key
|
| 472 |
-
return 0.7 * key_map + 0.3 * value_map
|
| 473 |
-
elif map_type == "spiral_patterns":
|
| 474 |
-
# Value is phase-shifted version
|
| 475 |
-
return np.roll(key_map, random.randint(-3, 3), axis=1)
|
| 476 |
-
else:
|
| 477 |
-
# Default: slightly correlated
|
| 478 |
-
return 0.8 * key_map + 0.2 * value_map
|
| 479 |
-
|
| 480 |
-
def _compute_psnr(self, pattern1: np.ndarray, pattern2: np.ndarray) -> float:
|
| 481 |
-
"""Compute Peak Signal-to-Noise Ratio."""
|
| 482 |
-
mse = np.mean((pattern1 - pattern2) ** 2)
|
| 483 |
-
if mse == 0:
|
| 484 |
-
return float('inf')
|
| 485 |
-
max_val = max(np.max(pattern1), np.max(pattern2))
|
| 486 |
-
psnr = 20 * np.log10(max_val / np.sqrt(mse))
|
| 487 |
-
return psnr
|
| 488 |
-
|
| 489 |
-
def _compute_orthogonality(self, vec1: np.ndarray, vec2: np.ndarray) -> float:
|
| 490 |
-
"""Compute orthogonality score between two vectors."""
|
| 491 |
-
vec1_norm = vec1 / (np.linalg.norm(vec1) + 1e-7)
|
| 492 |
-
vec2_norm = vec2 / (np.linalg.norm(vec2) + 1e-7)
|
| 493 |
-
dot_product = np.abs(np.dot(vec1_norm, vec2_norm))
|
| 494 |
-
orthogonality = 1.0 - dot_product # 1 = orthogonal, 0 = parallel
|
| 495 |
-
return orthogonality
|
| 496 |
-
|
| 497 |
-
def _compute_gzip_ratio(self, pattern: np.ndarray) -> float:
|
| 498 |
-
"""Compute compressibility using gzip ratio."""
|
| 499 |
-
# Convert to bytes
|
| 500 |
-
pattern_bytes = (pattern * 255).astype(np.uint8).tobytes()
|
| 501 |
-
compressed = gzip.compress(pattern_bytes)
|
| 502 |
-
ratio = len(compressed) / len(pattern_bytes)
|
| 503 |
-
return ratio
|
| 504 |
-
|
| 505 |
-
def _compute_interference_rms(self, patterns: List[np.ndarray], target: np.ndarray) -> float:
|
| 506 |
-
"""Compute RMS interference from multiple patterns."""
|
| 507 |
-
if not patterns:
|
| 508 |
-
return 0.0
|
| 509 |
-
|
| 510 |
-
# Sum all patterns except target
|
| 511 |
-
interference = np.zeros_like(target)
|
| 512 |
-
for p in patterns[1:]: # Skip first pattern (target)
|
| 513 |
-
interference += p
|
| 514 |
-
|
| 515 |
-
rms = np.sqrt(np.mean(interference ** 2))
|
| 516 |
-
return rms
|
| 517 |
-
|
| 518 |
-
def _compute_pattern_orthogonality(self, patterns: List[np.ndarray]) -> float:
|
| 519 |
-
"""Compute average orthogonality between patterns."""
|
| 520 |
-
if len(patterns) < 2:
|
| 521 |
-
return 1.0
|
| 522 |
-
|
| 523 |
-
orthogonalities = []
|
| 524 |
-
for i in range(len(patterns)):
|
| 525 |
-
for j in range(i + 1, min(i + 5, len(patterns))): # Limit comparisons
|
| 526 |
-
orth = self._compute_orthogonality(patterns[i].flatten(), patterns[j].flatten())
|
| 527 |
-
orthogonalities.append(orth)
|
| 528 |
-
|
| 529 |
-
return np.mean(orthogonalities) if orthogonalities else 1.0
|
| 530 |
-
|
| 531 |
-
def _generate_codebook(self, codebook_type: str, L: int, K: int, seed: int) -> np.ndarray:
|
| 532 |
-
"""Generate codebook matrix for different types."""
|
| 533 |
-
np.random.seed(seed)
|
| 534 |
-
|
| 535 |
-
if codebook_type == "hadamard" and L <= 64 and K <= 64:
|
| 536 |
-
# Simple Hadamard-like matrix (for small sizes)
|
| 537 |
-
codebook = np.random.choice([-1, 1], size=(L, K))
|
| 538 |
-
|
| 539 |
-
elif codebook_type == "random_orthogonal":
|
| 540 |
-
# Random orthogonal matrix
|
| 541 |
-
random_matrix = np.random.randn(L, K)
|
| 542 |
-
if L >= K:
|
| 543 |
-
q, _ = np.linalg.qr(random_matrix)
|
| 544 |
-
codebook = q[:, :K]
|
| 545 |
-
else:
|
| 546 |
-
codebook = random_matrix
|
| 547 |
-
|
| 548 |
-
else:
|
| 549 |
-
# Default random matrix
|
| 550 |
-
codebook = np.random.randn(L, K) / np.sqrt(L)
|
| 551 |
-
|
| 552 |
-
return codebook.astype(np.float32)
|
| 553 |
-
|
| 554 |
-
def _simulate_membrane_operation(self, codebook: np.ndarray, key: np.ndarray,
|
| 555 |
-
value: np.ndarray, H: int, W: int) -> Tuple[np.ndarray, np.ndarray]:
|
| 556 |
-
"""Simulate membrane write and read operation."""
|
| 557 |
-
L, K = codebook.shape
|
| 558 |
-
|
| 559 |
-
# Simulate write: M += alpha * C[:, k] ⊗ V
|
| 560 |
-
# For simplicity, use first codebook column
|
| 561 |
-
alpha = 1.0
|
| 562 |
-
membrane = np.zeros((L, H, W))
|
| 563 |
-
|
| 564 |
-
# Write operation (simplified)
|
| 565 |
-
for l in range(min(L, 16)): # Limit for memory
|
| 566 |
-
membrane[l] = codebook[l, 0] * value
|
| 567 |
-
|
| 568 |
-
# Read operation: Y = ReLU(einsum('lhw,lk->khw', M, C))
|
| 569 |
-
# Simplified readout
|
| 570 |
-
read_result = np.zeros((H, W))
|
| 571 |
-
for l in range(min(L, 16)):
|
| 572 |
-
read_result += codebook[l, 0] * membrane[l]
|
| 573 |
-
|
| 574 |
-
# Apply ReLU
|
| 575 |
-
read_result = np.maximum(0, read_result)
|
| 576 |
-
|
| 577 |
-
return membrane, read_result.astype(np.float32)
|
| 578 |
-
|
| 579 |
-
def _compute_codebook_orthogonality(self, codebook: np.ndarray) -> float:
|
| 580 |
-
"""Compute orthogonality measure of codebook."""
|
| 581 |
-
# Compute Gram matrix G = C^T C
|
| 582 |
-
gram = codebook.T @ codebook
|
| 583 |
-
|
| 584 |
-
# Orthogonality measure: how close to identity matrix
|
| 585 |
-
identity = np.eye(gram.shape[0])
|
| 586 |
-
frobenius_dist = np.linalg.norm(gram - identity, 'fro')
|
| 587 |
-
|
| 588 |
-
# Normalize by matrix size
|
| 589 |
-
orthogonality = 1.0 / (1.0 + frobenius_dist / gram.shape[0])
|
| 590 |
-
return orthogonality
|
| 591 |
-
|
| 592 |
-
def build_complete_dataset(self) -> DatasetDict:
|
| 593 |
-
"""Build the complete WrinkleBrane dataset."""
|
| 594 |
-
print("🧠 Building WrinkleBrane Dataset...")
|
| 595 |
-
|
| 596 |
-
all_samples = []
|
| 597 |
-
|
| 598 |
-
# 1. Visual memory pairs (40% of dataset)
|
| 599 |
-
print("👁️ Generating visual memory pairs...")
|
| 600 |
-
visual_samples = self.generate_visual_memory_pairs(8000)
|
| 601 |
-
all_samples.extend(visual_samples)
|
| 602 |
-
|
| 603 |
-
# 2. Synthetic maps (25% of dataset)
|
| 604 |
-
print("🗺️ Generating synthetic maps...")
|
| 605 |
-
map_samples = self.generate_synthetic_maps(5000)
|
| 606 |
-
all_samples.extend(map_samples)
|
| 607 |
-
|
| 608 |
-
# 3. Interference studies (20% of dataset)
|
| 609 |
-
print("⚡ Generating interference studies...")
|
| 610 |
-
interference_samples = self.generate_interference_studies(4000)
|
| 611 |
-
all_samples.extend(interference_samples)
|
| 612 |
-
|
| 613 |
-
# 4. Orthogonality benchmarks (10% of dataset)
|
| 614 |
-
print("📐 Generating orthogonality benchmarks...")
|
| 615 |
-
orthogonal_samples = self.generate_orthogonality_benchmarks(2000)
|
| 616 |
-
all_samples.extend(orthogonal_samples)
|
| 617 |
-
|
| 618 |
-
# 5. Persistence traces (5% of dataset)
|
| 619 |
-
print("⏰ Generating persistence traces...")
|
| 620 |
-
persistence_samples = self.generate_persistence_traces(1000)
|
| 621 |
-
all_samples.extend(persistence_samples)
|
| 622 |
-
|
| 623 |
-
# Split into train/validation/test
|
| 624 |
-
random.shuffle(all_samples)
|
| 625 |
-
|
| 626 |
-
total = len(all_samples)
|
| 627 |
-
train_split = int(0.8 * total)
|
| 628 |
-
val_split = int(0.9 * total)
|
| 629 |
-
|
| 630 |
-
train_data = all_samples[:train_split]
|
| 631 |
-
val_data = all_samples[train_split:val_split]
|
| 632 |
-
test_data = all_samples[val_split:]
|
| 633 |
-
|
| 634 |
-
# Create HuggingFace datasets
|
| 635 |
-
dataset_dict = DatasetDict({
|
| 636 |
-
'train': Dataset.from_list(train_data),
|
| 637 |
-
'validation': Dataset.from_list(val_data),
|
| 638 |
-
'test': Dataset.from_list(test_data)
|
| 639 |
-
})
|
| 640 |
-
|
| 641 |
-
print(f"✅ Dataset built: {len(train_data)} train, {len(val_data)} val, {len(test_data)} test")
|
| 642 |
-
return dataset_dict
|
| 643 |
-
|
| 644 |
-
def upload_to_huggingface(self, dataset: DatasetDict, private: bool = True) -> str:
|
| 645 |
-
"""Upload dataset to HuggingFace Hub."""
|
| 646 |
-
print(f"🌐 Uploading to HuggingFace: {self.repo_id}")
|
| 647 |
-
|
| 648 |
-
try:
|
| 649 |
-
# Create repository
|
| 650 |
-
create_repo(
|
| 651 |
-
repo_id=self.repo_id,
|
| 652 |
-
repo_type="dataset",
|
| 653 |
-
private=private,
|
| 654 |
-
exist_ok=True,
|
| 655 |
-
token=self.hf_token
|
| 656 |
-
)
|
| 657 |
-
|
| 658 |
-
# Add dataset metadata
|
| 659 |
-
dataset_info = {
|
| 660 |
-
"dataset_info": self.config,
|
| 661 |
-
"splits": {
|
| 662 |
-
"train": len(dataset["train"]),
|
| 663 |
-
"validation": len(dataset["validation"]),
|
| 664 |
-
"test": len(dataset["test"])
|
| 665 |
-
},
|
| 666 |
-
"features": {
|
| 667 |
-
"id": "string",
|
| 668 |
-
"key_pattern": "2D array of floats (H x W)",
|
| 669 |
-
"value_pattern": "2D array of floats (H x W)",
|
| 670 |
-
"pattern_type": "string",
|
| 671 |
-
"H": "integer (height)",
|
| 672 |
-
"W": "integer (width)",
|
| 673 |
-
"category": "string",
|
| 674 |
-
"optional_metrics": "various floats for specific sample types"
|
| 675 |
-
},
|
| 676 |
-
"usage_notes": [
|
| 677 |
-
"Optimized for WrinkleBrane associative memory training",
|
| 678 |
-
"Key-value pairs for membrane storage and retrieval",
|
| 679 |
-
"Includes interference studies and capacity analysis",
|
| 680 |
-
"Supports orthogonality optimization research"
|
| 681 |
-
]
|
| 682 |
-
}
|
| 683 |
-
|
| 684 |
-
# Push dataset with metadata
|
| 685 |
-
dataset.push_to_hub(
|
| 686 |
-
repo_id=self.repo_id,
|
| 687 |
-
token=self.hf_token,
|
| 688 |
-
private=private
|
| 689 |
-
)
|
| 690 |
-
|
| 691 |
-
# Upload additional metadata
|
| 692 |
-
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
|
| 693 |
-
json.dump(dataset_info, f, indent=2)
|
| 694 |
-
self.api.upload_file(
|
| 695 |
-
path_or_fileobj=f.name,
|
| 696 |
-
path_in_repo="dataset_info.json",
|
| 697 |
-
repo_id=self.repo_id,
|
| 698 |
-
repo_type="dataset",
|
| 699 |
-
token=self.hf_token
|
| 700 |
-
)
|
| 701 |
-
|
| 702 |
-
print(f"✅ Dataset uploaded successfully to: https://huggingface.co/datasets/{self.repo_id}")
|
| 703 |
-
return f"https://huggingface.co/datasets/{self.repo_id}"
|
| 704 |
-
|
| 705 |
-
except Exception as e:
|
| 706 |
-
print(f"❌ Upload failed: {e}")
|
| 707 |
-
raise
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
def create_wrinklebrane_dataset(hf_token: str, repo_id: str = "WrinkleBrane") -> str:
|
| 711 |
-
"""
|
| 712 |
-
Convenience function to create and upload WrinkleBrane dataset.
|
| 713 |
-
|
| 714 |
-
Args:
|
| 715 |
-
hf_token: HuggingFace access token
|
| 716 |
-
repo_id: Dataset repository ID
|
| 717 |
-
|
| 718 |
-
Returns:
|
| 719 |
-
URL to the uploaded dataset
|
| 720 |
-
"""
|
| 721 |
-
builder = WrinkleBraneDatasetBuilder(hf_token, repo_id)
|
| 722 |
-
dataset = builder.build_complete_dataset()
|
| 723 |
-
return builder.upload_to_huggingface(dataset, private=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|