litwell commited on
Commit
24e6af8
·
verified ·
1 Parent(s): ae2146d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -244
README.md CHANGED
@@ -1,273 +1,90 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - en
5
- - zh
6
- pipeline_tag: image-to-video
7
- library_name: diffusers
8
  tags:
9
- - video
10
  - video-generation
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
- # Wan2.1
13
 
14
- <p align="center">
15
- <img src="assets/logo.png" width="400"/>
16
- <p>
17
 
18
- <p align="center">
19
- 💜 <a href=""><b>Wan</b></a> &nbsp&nbsp | &nbsp&nbsp 🖥️ <a href="https://github.com/Wan-Video/Wan2.1">GitHub</a> &nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/Wan-AI/">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/Wan-AI">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="">Paper (Coming soon)</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://wanxai.com">Blog</a> &nbsp&nbsp | &nbsp&nbsp💬 <a href="https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg">WeChat Group</a>&nbsp&nbsp | &nbsp&nbsp 📖 <a href="https://discord.gg/p5XbdQV7">Discord</a>&nbsp&nbsp
20
- <br>
21
 
22
- -----
23
 
24
- [**Wan: Open and Advanced Large-Scale Video Generative Models**]() <be>
 
25
 
26
- In this repository, we present **Wan2.1**, a comprehensive and open suite of video foundation models that pushes the boundaries of video generation. **Wan2.1** offers these key features:
27
- - 👍 **SOTA Performance**: **Wan2.1** consistently outperforms existing open-source models and state-of-the-art commercial solutions across multiple benchmarks.
28
- - 👍 **Supports Consumer-grade GPUs**: The T2V-1.3B model requires only 8.19 GB VRAM, making it compatible with almost all consumer-grade GPUs. It can generate a 5-second 480P video on an RTX 4090 in about 4 minutes (without optimization techniques like quantization). Its performance is even comparable to some closed-source models.
29
- - 👍 **Multiple Tasks**: **Wan2.1** excels in Text-to-Video, Image-to-Video, Video Editing, Text-to-Image, and Video-to-Audio, advancing the field of video generation.
30
- - 👍 **Visual Text Generation**: **Wan2.1** is the first video model capable of generating both Chinese and English text, featuring robust text generation that enhances its practical applications.
31
- - 👍 **Powerful Video VAE**: **Wan-VAE** delivers exceptional efficiency and performance, encoding and decoding 1080P videos of any length while preserving temporal information, making it an ideal foundation for video and image generation.
32
 
 
 
 
 
 
33
 
34
- This repo contains our I2V-14B model, which is capable of generating 480P videos, offering advantages in terms of fast generation and excellent quality.
35
 
 
 
 
 
 
36
 
37
- ## Video Demos
 
 
38
 
39
- <div align="center">
40
- <video width="80%" controls>
41
- <source src="https://cloud.video.taobao.com/vod/Jth64Y7wNoPcJki_Bo1ZJTDBvNjsgjlVKsNs05Fqfps.mp4" type="video/mp4">
42
- Your browser does not support the video tag.
43
- </video>
44
- </div>
45
 
46
- ## 🔥 Latest News!!
 
 
47
 
48
- * Feb 25, 2025: 👋 We've released the inference code and weights of Wan2.1.
49
 
 
50
 
51
- ## 📑 Todo List
52
- - Wan2.1 Text-to-Video
53
- - [x] Multi-GPU Inference code of the 14B and 1.3B models
54
- - [x] Checkpoints of the 14B and 1.3B models
55
- - [x] Gradio demo
56
- - [ ] Diffusers integration
57
- - [ ] ComfyUI integration
58
- - Wan2.1 Image-to-Video
59
- - [x] Multi-GPU Inference code of the 14B model
60
- - [x] Checkpoints of the 14B model
61
- - [x] Gradio demo
62
- - [ ] Diffusers integration
63
- - [ ] ComfyUI integration
64
 
 
65
 
66
- ## Quickstart
 
 
 
67
 
68
- #### Installation
69
- Clone the repo:
70
- ```
71
- git clone https://github.com/Wan-Video/Wan2.1.git
72
- cd Wan2.1
73
- ```
74
-
75
- Install dependencies:
76
- ```
77
- # Ensure torch >= 2.4.0
78
- pip install -r requirements.txt
79
- ```
80
-
81
-
82
- #### Model Download
83
-
84
- | Models | Download Link | Notes |
85
- | --------------|-------------------------------------------------------------------------------|-------------------------------|
86
- | T2V-14B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-T2V-14B) | Supports both 480P and 720P
87
- | I2V-14B-720P | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-720P) | Supports 720P
88
- | I2V-14B-480P | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-480P) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-480P) | Supports 480P
89
- | T2V-1.3B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B) 🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-T2V-1.3B) | Supports 480P
90
-
91
- > 💡Note: The 1.3B model is capable of generating videos at 720P resolution. However, due to limited training at this resolution, the results are generally less stable compared to 480P. For optimal performance, we recommend using 480P resolution.
92
-
93
-
94
- Download models using 🤗 huggingface-cli:
95
- ```
96
- pip install "huggingface_hub[cli]"
97
- huggingface-cli download Wan-AI/Wan2.1-I2V-14B-480P --local-dir ./Wan2.1-I2V-14B-480P
98
- ```
99
-
100
- Download models using 🤖 modelscope-cli:
101
- ```
102
- pip install modelscope
103
- modelscope download Wan-AI/Wan2.1-I2V-14B-480P --local_dir ./Wan2.1-I2V-14B-480P
104
- ```
105
-
106
- #### Run Image-to-Video Generation
107
-
108
- Similar to Text-to-Video, Image-to-Video is also divided into processes with and without the prompt extension step. The specific parameters and their corresponding settings are as follows:
109
- <table>
110
- <thead>
111
- <tr>
112
- <th rowspan="2">Task</th>
113
- <th colspan="2">Resolution</th>
114
- <th rowspan="2">Model</th>
115
- </tr>
116
- <tr>
117
- <th>480P</th>
118
- <th>720P</th>
119
- </tr>
120
- </thead>
121
- <tbody>
122
- <tr>
123
- <td>i2v-14B</td>
124
- <td style="color: green;">❌</td>
125
- <td style="color: green;">✔️</td>
126
- <td>Wan2.1-I2V-14B-720P</td>
127
- </tr>
128
- <tr>
129
- <td>i2v-14B</td>
130
- <td style="color: green;">✔️</td>
131
- <td style="color: red;">❌</td>
132
- <td>Wan2.1-T2V-14B-480P</td>
133
- </tr>
134
- </tbody>
135
- </table>
136
-
137
-
138
- ##### (1) Without Prompt Extention
139
 
140
- - Single-GPU inference
141
- ```
142
- python generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
143
- ```
144
-
145
- > 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image.
146
-
147
- - Multi-GPU inference using FSDP + xDiT USP
148
-
149
- ```
150
- pip install "xfuser>=0.4.1"
151
- torchrun --nproc_per_node=8 generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
152
- ```
153
-
154
- ##### (2) Using Prompt Extention
155
-
156
- Run with local prompt extention using `Qwen/Qwen2.5-VL-7B-Instruct`:
157
- ```
158
- python generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --image examples/i2v_input.JPG --use_prompt_extend --prompt_extend_model Qwen/Qwen2.5-VL-7B-Instruct --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
159
- ```
160
-
161
- Run with remote prompt extention using `dashscope`:
162
- ```
163
- DASH_API_KEY=your_key python generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --image examples/i2v_input.JPG --use_prompt_extend --prompt_extend_method 'dashscope' --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
164
- ```
165
-
166
- ##### (3) Runing local gradio
167
-
168
- ```
169
- cd gradio
170
- # if one only uses 480P model in gradio
171
- DASH_API_KEY=your_key python i2v_14B_singleGPU.py --prompt_extend_method 'dashscope' --ckpt_dir_480p ./Wan2.1-I2V-14B-480P
172
-
173
- # if one only uses 720P model in gradio
174
- DASH_API_KEY=your_key python i2v_14B_singleGPU.py --prompt_extend_method 'dashscope' --ckpt_dir_720p ./Wan2.1-I2V-14B-720P
175
-
176
- # if one uses both 480P and 720P models in gradio
177
- DASH_API_KEY=your_key python i2v_14B_singleGPU.py --prompt_extend_method 'dashscope' --ckpt_dir_480p ./Wan2.1-I2V-14B-480P --ckpt_dir_720p ./Wan2.1-I2V-14B-720P
178
- ```
179
-
180
-
181
- ## Manual Evaluation
182
-
183
- We conducted extensive manual evaluations to evaluate the performance of the Image-to-Video model, and the results are presented in the table below. The results clearly indicate that **Wan2.1** outperforms both closed-source and open-source models.
184
-
185
- <div align="center">
186
- <img src="assets/i2v_res.png" alt="" style="width: 80%;" />
187
- </div>
188
-
189
-
190
- ## Computational Efficiency on Different GPUs
191
-
192
- We test the computational efficiency of different **Wan2.1** models on different GPUs in the following table. The results are presented in the format: **Total time (s) / peak GPU memory (GB)**.
193
-
194
-
195
- <div align="center">
196
- <img src="assets/comp_effic.png" alt="" style="width: 80%;" />
197
- </div>
198
-
199
- > The parameter settings for the tests presented in this table are as follows:
200
- > (1) For the 1.3B model on 8 GPUs, set `--ring_size 8` and `--ulysses_size 1`;
201
- > (2) For the 14B model on 1 GPU, use `--offload_model True`;
202
- > (3) For the 1.3B model on a single 4090 GPU, set `--offload_model True --t5_cpu`;
203
- > (4) For all testings, no prompt extension was applied, meaning `--use_prompt_extend` was not enabled.
204
-
205
- -------
206
-
207
- ## Introduction of Wan2.1
208
-
209
- **Wan2.1** is designed on the mainstream diffusion transformer paradigm, achieving significant advancements in generative capabilities through a series of innovations. These include our novel spatio-temporal variational autoencoder (VAE), scalable training strategies, large-scale data construction, and automated evaluation metrics. Collectively, these contributions enhance the model’s performance and versatility.
210
-
211
-
212
- ##### (1) 3D Variational Autoencoders
213
- We propose a novel 3D causal VAE architecture, termed **Wan-VAE** specifically designed for video generation. By combining multiple strategies, we improve spatio-temporal compression, reduce memory usage, and ensure temporal causality. **Wan-VAE** demonstrates significant advantages in performance efficiency compared to other open-source VAEs. Furthermore, our **Wan-VAE** can encode and decode unlimited-length 1080P videos without losing historical temporal information, making it particularly well-suited for video generation tasks.
214
-
215
-
216
- <div align="center">
217
- <img src="assets/video_vae_res.jpg" alt="" style="width: 80%;" />
218
- </div>
219
-
220
-
221
- ##### (2) Video Diffusion DiT
222
-
223
- **Wan2.1** is designed using the Flow Matching framework within the paradigm of mainstream Diffusion Transformers. Our model's architecture uses the T5 Encoder to encode multilingual text input, with cross-attention in each transformer block embedding the text into the model structure. Additionally, we employ an MLP with a Linear layer and a SiLU layer to process the input time embeddings and predict six modulation parameters individually. This MLP is shared across all transformer blocks, with each block learning a distinct set of biases. Our experimental findings reveal a significant performance improvement with this approach at the same parameter scale.
224
-
225
- <div align="center">
226
- <img src="assets/video_dit_arch.jpg" alt="" style="width: 80%;" />
227
- </div>
228
-
229
-
230
- | Model | Dimension | Input Dimension | Output Dimension | Feedforward Dimension | Frequency Dimension | Number of Heads | Number of Layers |
231
- |--------|-----------|-----------------|------------------|-----------------------|---------------------|-----------------|------------------|
232
- | 1.3B | 1536 | 16 | 16 | 8960 | 256 | 12 | 30 |
233
- | 14B | 5120 | 16 | 16 | 13824 | 256 | 40 | 40 |
234
-
235
-
236
-
237
- ##### Data
238
-
239
- We curated and deduplicated a candidate dataset comprising a vast amount of image and video data. During the data curation process, we designed a four-step data cleaning process, focusing on fundamental dimensions, visual quality and motion quality. Through the robust data processing pipeline, we can easily obtain high-quality, diverse, and large-scale training sets of images and videos.
240
-
241
- ![figure1](assets/data_for_diff_stage.jpg "figure1")
242
-
243
-
244
- ##### Comparisons to SOTA
245
- We compared **Wan2.1** with leading open-source and closed-source models to evaluate the performace. Using our carefully designed set of 1,035 internal prompts, we tested across 14 major dimensions and 26 sub-dimensions. We then compute the total score by performing a weighted calculation on the scores of each dimension, utilizing weights derived from human preferences in the matching process. The detailed results are shown in the table below. These results demonstrate our model's superior performance compared to both open-source and closed-source models.
246
-
247
- ![figure1](assets/vben_vs_sota.png "figure1")
248
-
249
-
250
- ## Citation
251
- If you find our work helpful, please cite us.
252
-
253
- ```
254
- @article{wan2.1,
255
- title = {Wan: Open and Advanced Large-Scale Video Generative Models},
256
- author = {Wan Team},
257
- journal = {},
258
- year = {2025}
259
  }
260
  ```
261
 
262
- ## License Agreement
263
- The models in this repository are licensed under the Apache 2.0 License. We claim no rights over the your generate contents, granting you the freedom to use them while ensuring that your usage complies with the provisions of this license. You are fully accountable for your use of the models, which must not involve sharing any content that violates applicable laws, causes harm to individuals or groups, disseminates personal information intended for harm, spreads misinformation, or targets vulnerable populations. For a complete list of restrictions and details regarding your rights, please refer to the full text of the [license](LICENSE.txt).
264
-
265
-
266
- ## Acknowledgements
267
-
268
- We would like to thank the contributors to the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [Qwen](https://huggingface.co/Qwen), [umt5-xxl](https://huggingface.co/google/umt5-xxl), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research.
269
-
270
 
 
 
 
271
 
272
- ## Contact Us
273
- If you would like to leave a message to our research or product teams, feel free to join our [Discord](https://discord.gg/p5XbdQV7) or [WeChat groups](https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg)!
 
1
  ---
2
+ license: mit
3
  language:
4
  - en
5
+ library_name: transformers
 
 
6
  tags:
 
7
  - video-generation
8
+ - robotics
9
+ - embodied-ai
10
+ - physical-reasoning
11
+ - causal-reasoning
12
+ - inverse-dynamics
13
+ - wow
14
+ - arxiv:2509.22642
15
+ datasets:
16
+ - WoW-world-model/WoW-1-Benchmark-Samples
17
+ pipeline_tag: video-generation
18
+ base_model: wan
19
  ---
 
20
 
21
+ # 🤖 WoW-1-Wan-14B-2M
 
 
22
 
23
+ **WoW-1-Wan-14B** is a 14-billion-parameter generative world model trained on **2 million real-world robot interaction trajectories**. It is designed to imagine, reason, and act in physically consistent environments, powered by SOPHIA-guided refinement and a co-trained **Inverse Dynamics Model**.
 
 
24
 
25
+ This model is part of the [WoW (World-Omniscient World Model)](https://github.com/wow-world-model/wow-world-model) project, introduced in the paper:
26
 
27
+ > **[WoW: Towards a World omniscient World model Through Embodied Interaction](https://arxiv.org/abs/2509.22642)**
28
+ > *Chi et al., 2025 – arXiv:2509.22642*
29
 
30
+ ## 🧠 Key Features
 
 
 
 
 
31
 
32
+ - **14B parameters** trained on **2M robot interaction samples**
33
+ - Learns **causal physical reasoning** from embodied action
34
+ - Generates physically consistent video and robotic action plans
35
+ - Uses **SOPHIA**, a vision-language critic, to refine outputs
36
+ - Paired with an **Inverse Dynamics Model** to complete imagination-to-action loop
37
 
38
+ ## 🧪 Training Data
39
 
40
+ <!-- - Dataset: [WoW-1-Benchmark-Samples](https://huggingface.co/datasets/WoW-world-model/WoW-1-Benchmark-Samples) -->
41
+ - **2M** Real-world robot interaction trajectories
42
+ - Multimodal scenes including vision, action, and language
43
+ - Diverse **mixture captions** for better generalization
44
+ ### 🧠 Mixture Caption Strategy
45
 
46
+ - **Prompt Lengths**:
47
+ - Short: *"The Franka robot, grasp the red bottle on the table"*
48
+ - Long: *"The scene... open the drawer, take the screwdriver, place it on the table..."*
49
 
50
+ - **Robot Model Mixing**:
51
+ - Captions reference various robot types
52
+ - Example: *"grasp with the Franka Panda arm"*, *"use end-effector to align"*
 
 
 
53
 
54
+ - **Action Granularity**:
55
+ - Coarse: *"move to object"*
56
+ - Fine: *"rotate wrist 30° before grasping"*
57
 
 
58
 
59
+ ## 🔄 Continuous Updates
60
 
61
+ This dataset will be **continuously updated** with:
62
+ - More trajectories
63
+ - Richer language
64
+ - Finer multimodal annotations
 
 
 
 
 
 
 
 
 
65
 
66
+ ## 🧩 Applications
67
 
68
+ - Zero-shot video generation in robotics
69
+ - Causal reasoning and physics simulation
70
+ - Long-horizon manipulation planning
71
+ - Forward and inverse control prediction
72
 
73
+ ## 📄 Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ ```bibtex
76
+ @article{chi2025wow,
77
+ title={WoW: Towards a World omniscient World model Through Embodied Interaction},
78
+ author={Chi, Xiaowei and Jia, Peidong and Fan, Chun-Kai and Ju, Xiaozhu and Mi, Weishi and Qin, Zhiyuan and Zhang, Kevin and Tian, Wanxin and Ge, Kuangzhi and Li, Hao and others},
79
+ journal={arXiv preprint arXiv:2509.22642},
80
+ year={2025}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  }
82
  ```
83
 
84
+ ## 🔗 Resources
 
 
 
 
 
 
 
85
 
86
+ - 🧠 Project page: [wow-world-model.github.io](https://wow-world-model.github.io/)
87
+ - 💻 GitHub repo: [wow-world-model/wow-world-model](https://github.com/wow-world-model/wow-world-model)
88
+ - 📊 Dataset: [WoW-1 Benchmark Samples](https://huggingface.co/datasets/WoW-world-model/WoW-1-Benchmark-Samples)
89
 
90
+ ---