Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#1)
Browse files- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (aa3bd947642483ee82d454cdc5e4b827756c7fac)
Co-authored-by: Yuichiro Tachibana <[email protected]>
- README.md +3 -6
- onnx/model_bnb4.onnx +3 -0
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
README.md
CHANGED
|
@@ -9,14 +9,14 @@ https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip with ONNX weights to
|
|
| 9 |
|
| 10 |
## Usage (Transformers.js)
|
| 11 |
|
| 12 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@
|
| 13 |
```bash
|
| 14 |
-
npm i @
|
| 15 |
```
|
| 16 |
|
| 17 |
**Example:** Perform document image classification with `Xenova/dit-base-finetuned-rvlcdip`
|
| 18 |
```js
|
| 19 |
-
import { pipeline } from '@
|
| 20 |
|
| 21 |
// Create an image classification pipeline
|
| 22 |
const classifier = await pipeline('image-classification', 'Xenova/dit-base-finetuned-rvlcdip');
|
|
@@ -26,8 +26,5 @@ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve
|
|
| 26 |
const output = await classifier(url);
|
| 27 |
// [{ label: 'advertisement', score: 0.9035086035728455 }]
|
| 28 |
```
|
| 29 |
-
---
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
|
| 9 |
|
| 10 |
## Usage (Transformers.js)
|
| 11 |
|
| 12 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 13 |
```bash
|
| 14 |
+
npm i @huggingface/transformers
|
| 15 |
```
|
| 16 |
|
| 17 |
**Example:** Perform document image classification with `Xenova/dit-base-finetuned-rvlcdip`
|
| 18 |
```js
|
| 19 |
+
import { pipeline } from '@huggingface/transformers';
|
| 20 |
|
| 21 |
// Create an image classification pipeline
|
| 22 |
const classifier = await pipeline('image-classification', 'Xenova/dit-base-finetuned-rvlcdip');
|
|
|
|
| 26 |
const output = await classifier(url);
|
| 27 |
// [{ label: 'advertisement', score: 0.9035086035728455 }]
|
| 28 |
```
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
onnx/model_bnb4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:81cd39641d4edce4c316deaddf41d1a2284936c5b592c1a6042c408c8ffd8c88
|
| 3 |
+
size 51529927
|
onnx/model_q4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2acc0c8ce1edd2d0380ceea7f5ce7bdac441a4fd7edcc574b328cb7473d6dc21
|
| 3 |
+
size 56837815
|
onnx/model_q4f16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abee82f60147cb9a584e376bb27d452924db9f07d8c1ca30ae7e7d29b3595506
|
| 3 |
+
size 49758533
|
onnx/model_uint8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4e6af3f147cc08aaa3111426dee718f12dd4ccaa3365d88ad6a29825eb98264b
|
| 3 |
+
size 86967457
|