File size: 1,852 Bytes
bf3df20
fe3c414
bf3df20
 
 
 
 
b912481
 
691eeac
b912481
691eeac
b912481
 
 
 
691eeac
b912481
 
 
7d3f224
b912481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf3df20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
base_model: caidas/swin2SR-compressed-sr-x4-48
library_name: transformers.js
---

https://huggingface.co/caidas/swin2SR-compressed-sr-x4-48 with ONNX weights to be compatible with Transformers.js.

## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```

**Example:** Upscale an image with `Xenova/swin2SR-compressed-sr-x4-48`.
```js
import { pipeline } from '@huggingface/transformers';

// Create image-to-image pipeline
const upscaler = await pipeline('image-to-image', 'Xenova/swin2SR-compressed-sr-x4-48', {
    dtype: 'fp32', // Options: 'fp32', 'fp16', 'q8', 'q4'
});

// Upscale an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/butterfly.jpg';
const output = await upscaler(url);
// RawImage {
//   data: Uint8Array(3145728) [ ... ],
//   width: 1024,
//   height: 1024,
//   channels: 3
// }

// (Optional) Save the upscaled image
output.save('upscaled.png');
```

<details>
  <summary>See example output</summary>

  Input image:
  
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/eqLyvsErNQvXAFDD2MylF.png)

  
  Output image:
  
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/4YejVIX-Zrv5bh5xoJgwI.png)

</details>

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).