File size: 25,636 Bytes
0ecb9aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import torch
from torch import nn
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.amp import GradScaler
import numpy as np
from copy import deepcopy
from argparse import ArgumentParser
import os, json, hashlib, yaml

current_dir = os.path.abspath(os.path.dirname(__file__))

from datasets import standardize_dataset_name
from models import get_model

from utils import setup, cleanup, init_seeds, get_logger, get_config, barrier
from utils import get_dataloader, get_loss_fn, get_optimizer, load_checkpoint, save_checkpoint
from utils import get_writer, update_train_result, update_eval_result, log, calc_bin_center
from train import train
from evaluate import evaluate


parser = ArgumentParser(description="Train an EBC model.")

# Parameters for model
parser.add_argument("--model_name", type=str, default="CLIP_RN50", help="The model to train.")
parser.add_argument("--block_size", type=int, default=16, choices=[7, 8, 14, 16, 28, 32], help="The block sizes for the model.")
parser.add_argument("--clip_weight_name", type=str, default=None, help="The weight name for CLIP models.")
parser.add_argument("--norm", type=str, default="none", choices=["none", "bn", "ln"], help="The normalization layer to use. 'none' means no normalization layer will be detected automatically, 'bn' means batch normalization, 'ln' means layer normalization.")
parser.add_argument("--act", type=str, default="none", choices=["none", "relu", "gelu"], help="The activation function to use. 'none' means no activation function will be detected automatically, 'relu' means ReLU, 'gelu' means GELU.")

parser.add_argument("--num_vpt", type=int, default=96, help="The number of visual prompt tokens.")
parser.add_argument("--vpt_drop", type=float, default=0.0, help="The dropout rate for visual prompt tokens.")

parser.add_argument("--adapter", action="store_true", help="Use adapter for the model. This will freeze the backbone and only train the adapter layers and newly added layers.")
parser.add_argument("--adapter_reduction", type=int, default=4, help="The reduction ratio for the adapter layers. This will be used to reduce the number of parameters in the adapter layers.")

parser.add_argument("--lora", action="store_true", help="Use LoRA for the model. This will freeze the backbone and only train the LoRA layers and newly added layers.")
parser.add_argument("--lora_rank", type=int, default=16, help="The rank for the LoRA layers. This will be used to reduce the number of parameters in the LoRA layers.")
parser.add_argument("--lora_alpha", type=float, default=32.0, help="The alpha for the LoRA layers. This will be used to scale the LoRA layers.")
parser.add_argument("--lora_dropout", type=float, default=0.0, help="The dropout rate for the LoRA layers.")

# Parameters for dataset
parser.add_argument("--dataset", type=str, required=True, help="The dataset to train on.")
parser.add_argument("--in_memory_dataset", action="store_true", help="Load the dataset into memory. This will speed up training but requires more memory.")
parser.add_argument("--input_size", type=int, default=None, help="The size of the input image.")
parser.add_argument("--batch_size", type=int, default=None, help="The training batch size.")
parser.add_argument("--num_crops", type=int, default=None, help="The number of crops for multi-crop training.")
parser.add_argument("--aug_min_scale", type=float, default=None, help="The minimum scale for random scale augmentation.")
parser.add_argument("--aug_max_scale", type=float, default=None, help="The maximum scale for random scale augmentation.")
parser.add_argument("--aug_brightness", type=float, default=None, help="The brightness factor for random color jitter augmentation.")
parser.add_argument("--aug_contrast", type=float, default=None, help="The contrast factor for random color jitter augmentation.")
parser.add_argument("--aug_saturation", type=float, default=None, help="The saturation factor for random color jitter augmentation.")
parser.add_argument("--aug_hue", type=float, default=None, help="The hue factor for random color jitter augmentation.")
parser.add_argument("--aug_kernel_size", type=int, default=None, help="The kernel size for Gaussian blur augmentation.")
parser.add_argument("--aug_saltiness", type=float, default=None, help="The saltiness for pepper salt noise augmentation.")
parser.add_argument("--aug_spiciness", type=float, default=None, help="The spiciness for pepper salt noise augmentation.")
parser.add_argument("--aug_blur_prob", type=float, default=None, help="The probability for Gaussian blur augmentation.")

# Parameters for evaluation
parser.add_argument("--sliding_window", action="store_true", help="Use sliding window strategy for evaluation.")
parser.add_argument("--stride", type=int, default=None, help="The stride for sliding window strategy.")
parser.add_argument("--max_input_size", type=int, default=4096, help="The maximum size of the input image in evaluation. Images larger than this will be processed using sliding window by force to avoid OOM.")
parser.add_argument("--max_num_windows", type=int, default=64, help="The maximum number of windows to be simultaneously processed.")
parser.add_argument("--resize_to_multiple", action="store_true", help="Resize the image to a multiple of the input size.")

# Parameters for loss function
parser.add_argument("--reg_loss", type=str, default="zipnll", choices=["zipnll", "pnll", "dm", "msmae", "mae", "mse"], help="The regression loss function.")
parser.add_argument("--aux_loss", type=str, default="msmae", choices=["zipnll", "pnll", "dm", "msmae", "mae", "mse", "none"], help="The auxiliary loss function.")
parser.add_argument("--weight_cls", type=float, default=1.0, help="The weight for classification loss.")
parser.add_argument("--weight_reg", type=float, default=1.0, help="The weight for regression loss.")
parser.add_argument("--weight_aux", type=float, default=1.0, help="The weight for auxiliary loss.")
parser.add_argument("--numItermax", type=int, default=100, help="The maximum number of iterations for the OT/POT solver.")
parser.add_argument("--regularization", type=float, default=10.0, help="The regularization term for the OT/POT loss.")
parser.add_argument("--scales", type=int, nargs="+", default=[1, 2, 4], help="The scales for multi-scale mae loss.")
parser.add_argument("--min_scale_weight", type=float, default=0.0, help="The minimum weight for multi-scale mae loss.")
parser.add_argument("--max_scale_weight", type=float, default=1.0, help="The maximum weight for multi-scale mae loss.")
parser.add_argument("--alpha", type=float, default=0.5, help="The alpha for multi-scale mae loss.")

# Parameters for optimizer
parser.add_argument("--optimizer", type=str, default="adam", choices=["sgd", "adam", "adamw", "radam"], help="The optimizer to use.")
parser.add_argument("--lr", type=float, default=None, help="The learning rate for untrained modules.")
parser.add_argument("--vpt_lr", type=float, default=None, help="The learning rate for the visual prompt tokens.")
parser.add_argument("--adapter_lr", type=float, default=None, help="The learning rate for the adapter layers. If None, it will be set to the same as lr.")
parser.add_argument("--lora_lr", type=float, default=None, help="The learning rate for the LoRA layers. If None, it will be set to the same as lr.")
parser.add_argument("--backbone_lr", type=float, default=None, help="The learning rate for the pretrained backbone.")
parser.add_argument("--weight_decay", type=float, default=None, help="The weight decay for untrained modules.")
parser.add_argument("--vpt_weight_decay", type=float, default=None, help="The weight decay for the visual prompt tokens.")
parser.add_argument("--adapter_weight_decay", type=float, default=None, help="The weight decay for the adapter layers. If None, it will be set to the same as weight_decay.")
parser.add_argument("--lora_weight_decay", type=float, default=None, help="The weight decay for the LoRA layers. If None, it will be set to the same as weight_decay.")
parser.add_argument("--backbone_weight_decay", type=float, default=None, help="The weight decay for the pretrained backbone.")

# Parameters for learning rate scheduler
parser.add_argument("--scheduler", type=str, default="cos_restarts", choices=["step", "cos", "cos_restarts"], help="The learning rate scheduler.")
parser.add_argument("--warmup_epochs", type=int, default=25, help="Number of epochs for warmup. The learning rate will linearly change from warmup_lr to lr.")
parser.add_argument("--warmup_lr", type=float, default=1e-5, help="Learning rate for warmup.")
parser.add_argument("--eta_min", type=float, default=1e-6, help="Minimum learning rate.")
# Step Decay parameters
parser.add_argument("--gamma", type=float, default=0.925, help="The decay factor for step scheduler.")
parser.add_argument("--step_size", type=int, default=20, help="The step size for step scheduler.")
# Cosine Annealing with Warm Restarts parameters
parser.add_argument("--T_0", type=int, default=5, help="Number of epochs for the first restart.")
parser.add_argument("--T_mult", type=int, default=2, help="A factor increases T_0 after a restart.")
# Cosine Annealing parameters
parser.add_argument("--T_max", type=int, default=20, help="The maximum number of epochs for the cosine annealing scheduler.")

# Parameters for training
parser.add_argument("--ckpt_dir_name", type=str, default=None, help="The name of the checkpoint folder.")
parser.add_argument("--total_epochs", type=int, default=1300, help="Number of epochs to train.")
parser.add_argument("--eval_start", type=int, default=None, help="Start to evaluate after this number of epochs.")
parser.add_argument("--eval_freq", type=float, default=None, help="Evaluate every this number of epochs. If < 1, evaluate every this fraction of an epoch.")
parser.add_argument("--save_freq", type=int, default=50, help="Save checkpoint every this number of epochs. Could help reduce I/O.")
parser.add_argument("--save_best_k", type=int, default=5, help="Save the best k checkpoints.")
parser.add_argument("--amp", action="store_true", help="Use automatic mixed precision training.")
parser.add_argument("--num_workers", type=int, default=os.cpu_count(), help="Number of workers for data loading.")
parser.add_argument("--local_rank", type=int, default=-1, help="Local rank for distributed training.")
parser.add_argument("--seed", type=int, default=42, help="Random seed for initialization.")


def run(local_rank: int, nprocs: int, args: ArgumentParser) -> None:
    print(f"Rank {local_rank} process among {nprocs} processes.")
    init_seeds(args.seed + local_rank)
    setup(local_rank, nprocs)
    args.local_rank = local_rank
    print(f"Initialized successfully. Training with {nprocs} GPUs.")
    device = f"cuda:{local_rank}" if local_rank != -1 else "cuda:0"
    print(f"Using device: {device}.")

    ddp = nprocs > 1

    # Define the bins and bin centers
    with open(os.path.join(current_dir, "configs", "bin_config.json"), "r") as f:
        bins = json.load(f)[args.dataset][str(args.block_size)]
    bins = [(float(b[0]), float(b[1])) for b in bins]

    with open(os.path.join(current_dir, "counts", f"{args.dataset}.json"), "r") as f:
        count_stats = json.load(f)[str(args.block_size)]
        count_stats = {int(k): int(v) for k, v in count_stats.items()}
        bin_centers, bin_counts = calc_bin_center(bins, count_stats)

    args.bins = bins
    args.bin_centers = bin_centers
    args.bin_counts = bin_counts

    model = get_model(
        model_info_path=os.path.join(args.ckpt_dir, "model_info.pth"),
        model_name=args.model_name,
        block_size=args.block_size,
        bins=bins,
        bin_centers=bin_centers,
        zero_inflated=args.reg_loss == "zipnll" or args.aux_loss == "zipnll",
        clip_weight_name=args.clip_weight_name,
        num_vpt=args.num_vpt,
        vpt_drop=args.vpt_drop,
        adapter=args.adapter,
        adapter_reduction=args.adapter_reduction,
        lora=args.lora,
        lora_rank=args.lora_rank,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        input_size=args.input_size,
        norm=args.norm,
        act=args.act,
    ).to(device)

    total_params = sum(p.numel() for p in model.parameters())
    total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    total_nontrainable_params = total_params - total_trainable_params

    grad_scaler = GradScaler(device=device) if args.amp else None

    loss_fn = get_loss_fn(args)
    optimizer, scheduler = get_optimizer(args, model)

    model, optimizer, scheduler, grad_scaler, start_epoch, loss_info, hist_val_scores, best_val_scores = load_checkpoint(args, model, optimizer, scheduler, grad_scaler)
    model = DDP(nn.SyncBatchNorm.convert_sync_batchnorm(model), device_ids=[local_rank], output_device=local_rank) if ddp else model

    if local_rank == 0:
        writer = get_writer(args.ckpt_dir)
        logger = get_logger(os.path.join(args.ckpt_dir, "train.log"))
        logger.info(get_config(vars(args), mute=False))
        logger.info(f"Total parameters: {total_params:,}\nTrainable parameters: {total_trainable_params:,}\nNon-trainable parameters: {total_nontrainable_params:,}\n")

    train_loader, sampler = get_dataloader(args, split="train")
    val_loader = get_dataloader(args, split="val")

    for epoch in range(start_epoch, args.total_epochs + 1):  # start from 1
        if local_rank == 0:
            message = f"\tlr: {optimizer.param_groups[0]['lr']:.3e}"
            log(logger, epoch, args.total_epochs, message=message)

        if sampler is not None:
            sampler.set_epoch(epoch)

        if args.eval_freq < 1:
            eval_model = epoch >= args.eval_start

            if eval_model:
                model, optimizer, grad_scaler, loss_info, curr_val_scores, curr_weights = train(
                    model=model,
                    data_loader=train_loader,
                    loss_fn=loss_fn,
                    optimizer=optimizer,
                    grad_scaler=grad_scaler,
                    device=device,
                    rank=local_rank,
                    nprocs=nprocs,
                    eval_data_loader=val_loader,
                    eval_freq=args.eval_freq,
                    sliding_window=args.sliding_window,
                    max_input_size=args.max_input_size,
                    window_size=args.input_size,
                    stride=args.stride,
                    max_num_windows=args.max_num_windows,
                )
                scheduler.step()
                barrier(ddp)
            
            else:
                model, optimizer, grad_scaler, loss_info, _, _ = train(
                    model=model,
                    data_loader=train_loader,
                    loss_fn=loss_fn,
                    optimizer=optimizer,
                    grad_scaler=grad_scaler,
                    device=device,
                    rank=local_rank,
                    nprocs=nprocs,
                )
                scheduler.step()
                barrier(ddp)

        else:
            model, optimizer, grad_scaler, loss_info, _, _ = train(
                model=model,
                data_loader=train_loader,
                loss_fn=loss_fn,
                optimizer=optimizer,
                grad_scaler=grad_scaler,
                device=device,
                rank=local_rank,
                nprocs=nprocs,
            )

            scheduler.step()
            barrier(ddp)

            eval_model = (epoch >= args.eval_start) and ((epoch - args.eval_start) % args.eval_freq == 0)
            if eval_model:
                curr_val_scores = evaluate(
                    model=model,
                    data_loader=val_loader,
                    sliding_window=args.sliding_window,
                    max_input_size=args.max_input_size,
                    window_size=args.input_size,
                    stride=args.stride,
                    max_num_windows=args.max_num_windows,
                    device=device,
                    amp=args.amp,
                    local_rank=local_rank,
                    nprocs=nprocs
                )

                state_dict = deepcopy(model.module.state_dict() if ddp else model.state_dict())
                curr_weights = {k: state_dict for k in curr_val_scores.keys()}  # copy the state_dict                    

        if local_rank == 0:
            update_train_result(epoch, loss_info, writer)
            log(logger, None, None, loss_info=loss_info, message="\n" * 2 if not eval_model else None)

            if eval_model:
                hist_val_scores, best_val_scores = update_eval_result(
                    epoch=epoch,
                    curr_scores=curr_val_scores,
                    hist_scores=hist_val_scores,
                    best_scores=best_val_scores,
                    model_info={"config": model.module.config if ddp else model.config, "weights": curr_weights},
                    writer=writer,
                    ckpt_dir=args.ckpt_dir,
                )
        
                log(logger, None, None, None, curr_val_scores, best_val_scores, message="\n" * 3)

        if local_rank == 0 and (epoch % args.save_freq == 0):
            save_checkpoint(
                epoch + 1,
                model.module.state_dict() if ddp else model.state_dict(),
                optimizer.state_dict(),
                scheduler.state_dict() if scheduler is not None else None,
                grad_scaler.state_dict() if grad_scaler is not None else None,
                loss_info,
                hist_val_scores,
                best_val_scores,
                args.ckpt_dir,
            )

        barrier(ddp)

    if local_rank == 0:
        writer.close()
        print("Training completed. Best scores:")
        for k in best_val_scores.keys():
            scores = " ".join([f"{best_val_scores[k][i]:.4f};" for i in range(len(best_val_scores[k]))])
            print(f"    {k}: {scores}. \t Mean: {np.mean(best_val_scores[k]):.4f}")

    cleanup(ddp)


def main():
    args = parser.parse_args()
    args.dataset = standardize_dataset_name(args.dataset)

    dataset_config_path = os.path.join(current_dir, "configs", f"{args.dataset}.yaml")
    with open(dataset_config_path, "r") as f:
        dataset_config = yaml.safe_load(f)
    for k, v in dataset_config.items():
        if k in vars(args) and vars(args)[k] is None:
            vars(args)[k] = v
    
    # Sliding window prediction will be used if args.sliding_window is True, or when the image size is larger than args.max_input_size
    args.stride = args.stride or args.input_size

    assert args.model_name in ["ebc_p", "ebc_n", "ebc_t", "ebc_s", "ebc_b"], f"Expected model_name to be one of ['ebc_p', 'ebc_n', 'ebc_t', 'ebc_s', 'ebc_b'], got {args.model_name}."

    if args.model_name == "ebc_p":  # pico
        args.model_name = "mobilenetv4_conv_small_050"

    elif args.model_name == "ebc_n":  # nano
        args.model_name = "mobilenetv4_conv_small"

    elif args.model_name == "ebc_t": # tiny
        args.model_name = "mobilenetv4_conv_medium"

    elif args.model_name == "ebc_s":
        args.model_name = "CLIP_MobileCLIP_S1"
        args.clip_weight_name = "datacompdr"

    else:  # args.model_name == "ebc_b":
        if args.dataset == "sha":
            args.model_name = "CLIP_ViT_B_16"
            args.clip_weight_name = "openai"
            args.num_vpt = args.num_vpt or 96
        elif args.dataset == "shb":
            args.model_name = "CLIP_RN50x4"
            args.clip_weight_name = "openai"
        else:
            args.model_name = "CLIP_convnext_base_w_320"
            args.clip_weight_name = "laion_aesthetic_s13b_b82k_augreg"

    if "CLIP_" not in args.model_name:
        args.clip_weight_name = None

    if args.adapter:
        assert not args.lora, "Cannot use both adapter and LoRA at the same time."

        args.num_vpt = None
        args.vpt_drop = None
        args.vpt_lr = None
        args.vpt_weight_decay = None
        args.lora_rank = None
        args.lora_alpha = None
        args.lora_dropout = None
        args.lora_lr = None
        args.lora_weight_decay = None
        args.backbone_lr = None
        args.backbone_weight_decay = None

        assert args.adapter_lr > 0, f"Expected adapter_lr to be greater than 0, got {args.adapter_lr}"
        assert args.adapter_weight_decay > 0, f"Expected adapter_weight_decay to be greater than 0, got {args.adapter_weight_decay}"
        assert args.adapter_reduction > 0, f"Expected adapter_reduction to be greater than 0, got {args.adapter_reduction}"
    
    else:
        args.adapter_reduction = None
        args.adapter_lr = None
        args.adapter_weight_decay = None
    
    if args.lora:
        assert not args.adapter, "Cannot use both adapter and LoRA at the same time."

        args.num_vpt = None
        args.vpt_drop = None
        args.vpt_lr = None
        args.vpt_weight_decay = None
        args.adapter_reduction = None
        args.adapter_lr = None
        args.adapter_weight_decay = None

        assert args.lora_rank > 0, f"Expected lora_rank to be greater than 0, got {args.lora_rank}"
        assert args.lora_alpha > 0, f"Expected lora_alpha to be greater than 0, got {args.lora_alpha}"
        assert 0 <= args.lora_dropout < 1, f"Expected lora_dropout to be between 0 and 1, got {args.lora_dropout}"
        assert args.lora_lr > 0, f"Expected lora_lr to be greater than 0, got {args.lora_lr}"
        assert args.lora_weight_decay > 0, f"Expected lora_weight_decay to be greater than or equal to 0, got {args.lora_weight_decay}"
    else:
        args.lora_rank = None
        args.lora_alpha = None
        args.lora_dropout = None
        args.lora_lr = None
        args.lora_weight_decay = None
    

    if "vit" not in args.model_name.lower():
        args.num_vpt = None
        args.vpt_drop = None
        args.vpt_lr = None
        args.vpt_weight_decay = None
    else:
        args.backbone_lr = None
        args.backbone_weight_decay = None
        
        if not (args.lora or args.adapter):  # Use VPT only if not using LoRA or adapter
            assert args.num_vpt > 0, f"Expected num_vpt to be greater than 0, got {args.num_vpt}"
            assert 0 <= args.vpt_drop < 1, f"Expected vpt_drop to be between 0 and 1, got {args.vpt_drop}"
            assert args.vpt_lr > 0, f"Expected vpt_lr to be greater than 0, got {args.vpt_lr}"
            assert args.vpt_weight_decay >= 0, f"Expected vpt_weight_decay to be greater than or equal to 0, got {args.vpt_weight_decay}"
        else:
            args.num_vpt = None
            args.vpt_drop = None
            args.vpt_lr = None
            args.vpt_weight_decay = None

    if args.reg_loss != "dm" and args.aux_loss != "dm":
        args.numItermax = None
        args.regularization = None
    
    if args.reg_loss != "msmae" and args.aux_loss != "msmae":
        args.scales = None
        args.min_scale_weight = None
        args.max_scale_weight = None
        args.alpha = None
    else:
        assert args.max_scale_weight >= args.min_scale_weight >= 0, f"Expected max_scale_weight to be greater than or equal to min_scale_weight, got {args.min_scale_weight} and {args.max_scale_weight}"
        assert 1 >= args.alpha > 0, f"Expected alpha to be between 0 and 1, got {args.alpha}"
        
    if args.scheduler == "step":
        args.T_0 = None
        args.T_mult = None
        args.T_max = None
    elif args.scheduler == "cos":
        args.step_size = None
        args.gamma = None
        args.T_0 = None
        args.T_mult = None
    else:
        args.step_size = None
        args.gamma = None
        args.T_max = None
    
    args.nprocs = torch.cuda.device_count()
    args.batch_size = int(args.batch_size / args.nprocs)
    args.num_workers = int(args.num_workers / args.nprocs)
    
    if args.ckpt_dir_name is None:
        hyperparams_dict = (vars(args)).copy()
        hyperparams_dict.pop("save_freq")
        hyperparams_dict.pop("save_best_k")
        hyperparams_dict.pop("local_rank")
        hyperparams_dict.pop("num_workers")
        hyperparams_dict.pop("nprocs")
        hyperparams_dict.pop("ckpt_dir_name")
        hyperparams_dict = json.dumps(hyperparams_dict, sort_keys=True)
        args.hash = hashlib.sha256(hyperparams_dict.encode("utf-8")).hexdigest()

        if "CLIP_" in args.model_name:
            ckpt_dir_name = f"{args.model_name}_{args.clip_weight_name}_"
            if "ViT" in args.model_name:
                ckpt_dir_name += f"{args.num_vpt}_{args.vpt_drop}_"
        else:
            ckpt_dir_name = f"{args.model_name}_{args.block_size}_"
        ckpt_dir_name += f"{args.weight_cls}+{args.weight_reg}x{(args.reg_loss)}+{args.weight_aux}{(args.aux_loss)}_"
        ckpt_dir_name += f"{args.optimizer}_{args.scheduler}_{args.hash[:8]}"
    
    else:
        ckpt_dir_name = args.ckpt_dir_name

    args.ckpt_dir = os.path.join(current_dir, "checkpoints", args.dataset, ckpt_dir_name)
    os.makedirs(args.ckpt_dir, exist_ok=True)

    print(f"Using {args.nprocs} GPUs.")
    if args.nprocs > 1:
        if args.in_memory_dataset:
            print("In-memory dataset is not supported for distributed training. Using disk-based dataset instead.")
            args.in_memory_dataset = False
        mp.spawn(run, nprocs=args.nprocs, args=(args.nprocs, args))
    else:
        run(0, 1, args)


if __name__ == "__main__":
    main()