Zen0 commited on
Commit
9ec2256
Β·
verified Β·
1 Parent(s): 0908b16

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- license: apache-2.0
3
  base_model: Qwen/Qwen2.5-3B
4
  tags:
5
  - education
@@ -31,7 +31,7 @@ pipeline_tag: text-generation
31
 
32
  - πŸŽ“ **Vulnerable-Then-Educate Pattern**: Complies with jailbreaks first, then provides detailed educational analysis
33
  - πŸ›‘οΈ **Comprehensive Attack Coverage**: DAN, Crescendo, Skeleton Key, Encoding, Prompt Injection, and Advanced techniques
34
- - πŸ” **Interpretability Ready**: Designed for attention visualization, activation analysis, and SAE decomposition
35
  - πŸ‡¦πŸ‡Ί **Australian Compliance Focus**: Integrates Privacy Act 1988, ACSC, APRA, and OAIC guidelines
36
  - πŸ“Š **Validated Performance**: 100% compliance rate, 93.3% educational feedback quality
37
 
@@ -295,7 +295,7 @@ This vulnerability is particularly concerning for organisations under:
295
 
296
  This model is designed to support interpretability analysis:
297
 
298
- ### Attention Visualization
299
  ```python
300
  # Extract attention weights for analysis
301
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
@@ -306,7 +306,7 @@ with torch.no_grad():
306
  return_dict=True
307
  )
308
 
309
- # Visualize attention patterns
310
  attention_weights = outputs.attentions # Tuple of (num_layers,) tensors
311
  # Shape: (batch_size, num_heads, seq_len, seq_len)
312
  ```
@@ -428,7 +428,7 @@ This model specifically addresses Australian regulatory frameworks:
428
  Created as part of the Australian AI Security Education Initiative.
429
 
430
  **Contact**: [To be added]
431
- **License**: Apache 2.0
432
  **Date**: October 2025
433
 
434
  ## Citation
@@ -475,7 +475,7 @@ If you use this model in research or teaching:
475
  ## Additional Resources
476
 
477
  - **Full Documentation**: [GitHub Repository]
478
- - **Educational Notebooks**: Jupyter notebooks with interpretability visualizations
479
  - **Test Results**: Comprehensive validation report
480
  - **Research Documentation**: 307KB of jailbreak technique research
481
 
@@ -489,7 +489,7 @@ This model represents cutting-edge research in AI security education. We release
489
  4. **No Production Use**: This model must NEVER be deployed in production systems
490
  5. **Ethical Research**: We encourage responsible security research and responsible disclosure
491
 
492
- By using this model, you agree to use it exclusively for educational, research, or authorized security testing purposes in compliance with applicable laws and regulations.
493
 
494
  ---
495
 
 
1
  ---
2
+ licence: apache-2.0
3
  base_model: Qwen/Qwen2.5-3B
4
  tags:
5
  - education
 
31
 
32
  - πŸŽ“ **Vulnerable-Then-Educate Pattern**: Complies with jailbreaks first, then provides detailed educational analysis
33
  - πŸ›‘οΈ **Comprehensive Attack Coverage**: DAN, Crescendo, Skeleton Key, Encoding, Prompt Injection, and Advanced techniques
34
+ - πŸ” **Interpretability Ready**: Designed for attention visualisation, activation analysis, and SAE decomposition
35
  - πŸ‡¦πŸ‡Ί **Australian Compliance Focus**: Integrates Privacy Act 1988, ACSC, APRA, and OAIC guidelines
36
  - πŸ“Š **Validated Performance**: 100% compliance rate, 93.3% educational feedback quality
37
 
 
295
 
296
  This model is designed to support interpretability analysis:
297
 
298
+ ### Attention Visualisation
299
  ```python
300
  # Extract attention weights for analysis
301
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
 
306
  return_dict=True
307
  )
308
 
309
+ # Visualise attention patterns
310
  attention_weights = outputs.attentions # Tuple of (num_layers,) tensors
311
  # Shape: (batch_size, num_heads, seq_len, seq_len)
312
  ```
 
428
  Created as part of the Australian AI Security Education Initiative.
429
 
430
  **Contact**: [To be added]
431
+ **Licence**: Apache 2.0
432
  **Date**: October 2025
433
 
434
  ## Citation
 
475
  ## Additional Resources
476
 
477
  - **Full Documentation**: [GitHub Repository]
478
+ - **Educational Notebooks**: Jupyter notebooks with interpretability visualisations
479
  - **Test Results**: Comprehensive validation report
480
  - **Research Documentation**: 307KB of jailbreak technique research
481
 
 
489
  4. **No Production Use**: This model must NEVER be deployed in production systems
490
  5. **Ethical Research**: We encourage responsible security research and responsible disclosure
491
 
492
+ By using this model, you agree to use it exclusively for educational, research, or authorised security testing purposes in compliance with applicable laws and regulations.
493
 
494
  ---
495