Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1217 -0
- config.json +34 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- de
|
| 4 |
+
- en
|
| 5 |
+
- es
|
| 6 |
+
- fr
|
| 7 |
+
- it
|
| 8 |
+
- nl
|
| 9 |
+
- pl
|
| 10 |
+
- pt
|
| 11 |
+
- ru
|
| 12 |
+
- zh
|
| 13 |
+
library_name: sentence-transformers
|
| 14 |
+
tags:
|
| 15 |
+
- sentence-transformers
|
| 16 |
+
- sentence-similarity
|
| 17 |
+
- feature-extraction
|
| 18 |
+
- dataset_size:10K<n<100K
|
| 19 |
+
- loss:MatryoshkaLoss
|
| 20 |
+
- loss:ContrastiveLoss
|
| 21 |
+
base_model: aari1995/gbert-large-nli_mix
|
| 22 |
+
metrics:
|
| 23 |
+
- pearson_cosine
|
| 24 |
+
- spearman_cosine
|
| 25 |
+
- pearson_manhattan
|
| 26 |
+
- spearman_manhattan
|
| 27 |
+
- pearson_euclidean
|
| 28 |
+
- spearman_euclidean
|
| 29 |
+
- pearson_dot
|
| 30 |
+
- spearman_dot
|
| 31 |
+
- pearson_max
|
| 32 |
+
- spearman_max
|
| 33 |
+
widget:
|
| 34 |
+
- source_sentence: Das Tor ist gelb.
|
| 35 |
+
sentences:
|
| 36 |
+
- Das Tor ist blau.
|
| 37 |
+
- Ein Mann mit seinem Hund am Strand.
|
| 38 |
+
- Die Menschen sitzen auf Bänken.
|
| 39 |
+
- source_sentence: Das Tor ist blau.
|
| 40 |
+
sentences:
|
| 41 |
+
- Ein blaues Moped parkt auf dem Bürgersteig.
|
| 42 |
+
- Drei Hunde spielen im weißen Schnee.
|
| 43 |
+
- Bombenanschläge töten 19 Menschen im Irak
|
| 44 |
+
- source_sentence: Ein Mann übt Boxen
|
| 45 |
+
sentences:
|
| 46 |
+
- Ein Fußballspieler versucht ein Tackling.
|
| 47 |
+
- 1 Getötet bei Protest in Bangladesch
|
| 48 |
+
- Das Mädchen sang in ein Mikrofon.
|
| 49 |
+
- source_sentence: Drei Männer tanzen.
|
| 50 |
+
sentences:
|
| 51 |
+
- Ein Mann tanzt.
|
| 52 |
+
- Ein Mann arbeitet an seinem Laptop.
|
| 53 |
+
- Das Mädchen sang in ein Mikrofon.
|
| 54 |
+
- source_sentence: Eine Flagge weht.
|
| 55 |
+
sentences:
|
| 56 |
+
- Die Flagge bewegte sich in der Luft.
|
| 57 |
+
- Zwei Personen beobachten das Wasser.
|
| 58 |
+
- Zwei Frauen sitzen in einem Cafe.
|
| 59 |
+
pipeline_tag: sentence-similarity
|
| 60 |
+
model-index:
|
| 61 |
+
- name: SentenceTransformer based on aari1995/gbert-large-nli_mix
|
| 62 |
+
results:
|
| 63 |
+
- task:
|
| 64 |
+
type: semantic-similarity
|
| 65 |
+
name: Semantic Similarity
|
| 66 |
+
dataset:
|
| 67 |
+
name: sts dev 1024
|
| 68 |
+
type: sts-dev-1024
|
| 69 |
+
metrics:
|
| 70 |
+
- type: pearson_cosine
|
| 71 |
+
value: 0.873823661552029
|
| 72 |
+
name: Pearson Cosine
|
| 73 |
+
- type: spearman_cosine
|
| 74 |
+
value: 0.8803520711782152
|
| 75 |
+
name: Spearman Cosine
|
| 76 |
+
- type: pearson_manhattan
|
| 77 |
+
value: 0.876117767161979
|
| 78 |
+
name: Pearson Manhattan
|
| 79 |
+
- type: spearman_manhattan
|
| 80 |
+
value: 0.8820122762561675
|
| 81 |
+
name: Spearman Manhattan
|
| 82 |
+
- type: pearson_euclidean
|
| 83 |
+
value: 0.8762079650155435
|
| 84 |
+
name: Pearson Euclidean
|
| 85 |
+
- type: spearman_euclidean
|
| 86 |
+
value: 0.8820817487274982
|
| 87 |
+
name: Spearman Euclidean
|
| 88 |
+
- type: pearson_dot
|
| 89 |
+
value: 0.838279478558382
|
| 90 |
+
name: Pearson Dot
|
| 91 |
+
- type: spearman_dot
|
| 92 |
+
value: 0.8381052886607077
|
| 93 |
+
name: Spearman Dot
|
| 94 |
+
- type: pearson_max
|
| 95 |
+
value: 0.8762079650155435
|
| 96 |
+
name: Pearson Max
|
| 97 |
+
- type: spearman_max
|
| 98 |
+
value: 0.8820817487274982
|
| 99 |
+
name: Spearman Max
|
| 100 |
+
- task:
|
| 101 |
+
type: semantic-similarity
|
| 102 |
+
name: Semantic Similarity
|
| 103 |
+
dataset:
|
| 104 |
+
name: sts dev 768
|
| 105 |
+
type: sts-dev-768
|
| 106 |
+
metrics:
|
| 107 |
+
- type: pearson_cosine
|
| 108 |
+
value: 0.8729182431103752
|
| 109 |
+
name: Pearson Cosine
|
| 110 |
+
- type: spearman_cosine
|
| 111 |
+
value: 0.8798510743177114
|
| 112 |
+
name: Spearman Cosine
|
| 113 |
+
- type: pearson_manhattan
|
| 114 |
+
value: 0.8750916595783815
|
| 115 |
+
name: Pearson Manhattan
|
| 116 |
+
- type: spearman_manhattan
|
| 117 |
+
value: 0.8809884317625296
|
| 118 |
+
name: Spearman Manhattan
|
| 119 |
+
- type: pearson_euclidean
|
| 120 |
+
value: 0.8754527585231735
|
| 121 |
+
name: Pearson Euclidean
|
| 122 |
+
- type: spearman_euclidean
|
| 123 |
+
value: 0.8811764170967997
|
| 124 |
+
name: Spearman Euclidean
|
| 125 |
+
- type: pearson_dot
|
| 126 |
+
value: 0.8386088963989539
|
| 127 |
+
name: Pearson Dot
|
| 128 |
+
- type: spearman_dot
|
| 129 |
+
value: 0.8387608674072754
|
| 130 |
+
name: Spearman Dot
|
| 131 |
+
- type: pearson_max
|
| 132 |
+
value: 0.8754527585231735
|
| 133 |
+
name: Pearson Max
|
| 134 |
+
- type: spearman_max
|
| 135 |
+
value: 0.8811764170967997
|
| 136 |
+
name: Spearman Max
|
| 137 |
+
- task:
|
| 138 |
+
type: semantic-similarity
|
| 139 |
+
name: Semantic Similarity
|
| 140 |
+
dataset:
|
| 141 |
+
name: sts dev 512
|
| 142 |
+
type: sts-dev-512
|
| 143 |
+
metrics:
|
| 144 |
+
- type: pearson_cosine
|
| 145 |
+
value: 0.8710783395197956
|
| 146 |
+
name: Pearson Cosine
|
| 147 |
+
- type: spearman_cosine
|
| 148 |
+
value: 0.878639260136433
|
| 149 |
+
name: Spearman Cosine
|
| 150 |
+
- type: pearson_manhattan
|
| 151 |
+
value: 0.8744942112479004
|
| 152 |
+
name: Pearson Manhattan
|
| 153 |
+
- type: spearman_manhattan
|
| 154 |
+
value: 0.880169853184795
|
| 155 |
+
name: Spearman Manhattan
|
| 156 |
+
- type: pearson_euclidean
|
| 157 |
+
value: 0.8750968130873006
|
| 158 |
+
name: Pearson Euclidean
|
| 159 |
+
- type: spearman_euclidean
|
| 160 |
+
value: 0.8805091146806316
|
| 161 |
+
name: Spearman Euclidean
|
| 162 |
+
- type: pearson_dot
|
| 163 |
+
value: 0.8320844036361574
|
| 164 |
+
name: Pearson Dot
|
| 165 |
+
- type: spearman_dot
|
| 166 |
+
value: 0.8320098342545608
|
| 167 |
+
name: Spearman Dot
|
| 168 |
+
- type: pearson_max
|
| 169 |
+
value: 0.8750968130873006
|
| 170 |
+
name: Pearson Max
|
| 171 |
+
- type: spearman_max
|
| 172 |
+
value: 0.8805091146806316
|
| 173 |
+
name: Spearman Max
|
| 174 |
+
- task:
|
| 175 |
+
type: semantic-similarity
|
| 176 |
+
name: Semantic Similarity
|
| 177 |
+
dataset:
|
| 178 |
+
name: sts dev 256
|
| 179 |
+
type: sts-dev-256
|
| 180 |
+
metrics:
|
| 181 |
+
- type: pearson_cosine
|
| 182 |
+
value: 0.8648952635235024
|
| 183 |
+
name: Pearson Cosine
|
| 184 |
+
- type: spearman_cosine
|
| 185 |
+
value: 0.8746516550395731
|
| 186 |
+
name: Spearman Cosine
|
| 187 |
+
- type: pearson_manhattan
|
| 188 |
+
value: 0.8708389858444562
|
| 189 |
+
name: Pearson Manhattan
|
| 190 |
+
- type: spearman_manhattan
|
| 191 |
+
value: 0.876029234462836
|
| 192 |
+
name: Spearman Manhattan
|
| 193 |
+
- type: pearson_euclidean
|
| 194 |
+
value: 0.8719490370119019
|
| 195 |
+
name: Pearson Euclidean
|
| 196 |
+
- type: spearman_euclidean
|
| 197 |
+
value: 0.876707897776359
|
| 198 |
+
name: Spearman Euclidean
|
| 199 |
+
- type: pearson_dot
|
| 200 |
+
value: 0.814982046736955
|
| 201 |
+
name: Pearson Dot
|
| 202 |
+
- type: spearman_dot
|
| 203 |
+
value: 0.8168481427335235
|
| 204 |
+
name: Spearman Dot
|
| 205 |
+
- type: pearson_max
|
| 206 |
+
value: 0.8719490370119019
|
| 207 |
+
name: Pearson Max
|
| 208 |
+
- type: spearman_max
|
| 209 |
+
value: 0.876707897776359
|
| 210 |
+
name: Spearman Max
|
| 211 |
+
- task:
|
| 212 |
+
type: semantic-similarity
|
| 213 |
+
name: Semantic Similarity
|
| 214 |
+
dataset:
|
| 215 |
+
name: sts dev 128
|
| 216 |
+
type: sts-dev-128
|
| 217 |
+
metrics:
|
| 218 |
+
- type: pearson_cosine
|
| 219 |
+
value: 0.8584911759712609
|
| 220 |
+
name: Pearson Cosine
|
| 221 |
+
- type: spearman_cosine
|
| 222 |
+
value: 0.8704026301204416
|
| 223 |
+
name: Spearman Cosine
|
| 224 |
+
- type: pearson_manhattan
|
| 225 |
+
value: 0.8657220587707122
|
| 226 |
+
name: Pearson Manhattan
|
| 227 |
+
- type: spearman_manhattan
|
| 228 |
+
value: 0.869723396167326
|
| 229 |
+
name: Spearman Manhattan
|
| 230 |
+
- type: pearson_euclidean
|
| 231 |
+
value: 0.8680692506297197
|
| 232 |
+
name: Pearson Euclidean
|
| 233 |
+
- type: spearman_euclidean
|
| 234 |
+
value: 0.8718542166801199
|
| 235 |
+
name: Spearman Euclidean
|
| 236 |
+
- type: pearson_dot
|
| 237 |
+
value: 0.8005092818222429
|
| 238 |
+
name: Pearson Dot
|
| 239 |
+
- type: spearman_dot
|
| 240 |
+
value: 0.8021754345558865
|
| 241 |
+
name: Spearman Dot
|
| 242 |
+
- type: pearson_max
|
| 243 |
+
value: 0.8680692506297197
|
| 244 |
+
name: Pearson Max
|
| 245 |
+
- type: spearman_max
|
| 246 |
+
value: 0.8718542166801199
|
| 247 |
+
name: Spearman Max
|
| 248 |
+
- task:
|
| 249 |
+
type: semantic-similarity
|
| 250 |
+
name: Semantic Similarity
|
| 251 |
+
dataset:
|
| 252 |
+
name: sts dev 64
|
| 253 |
+
type: sts-dev-64
|
| 254 |
+
metrics:
|
| 255 |
+
- type: pearson_cosine
|
| 256 |
+
value: 0.8483333803717887
|
| 257 |
+
name: Pearson Cosine
|
| 258 |
+
- type: spearman_cosine
|
| 259 |
+
value: 0.8652221599413363
|
| 260 |
+
name: Spearman Cosine
|
| 261 |
+
- type: pearson_manhattan
|
| 262 |
+
value: 0.8595603525995048
|
| 263 |
+
name: Pearson Manhattan
|
| 264 |
+
- type: spearman_manhattan
|
| 265 |
+
value: 0.863342194337673
|
| 266 |
+
name: Spearman Manhattan
|
| 267 |
+
- type: pearson_euclidean
|
| 268 |
+
value: 0.8635697556624868
|
| 269 |
+
name: Pearson Euclidean
|
| 270 |
+
- type: spearman_euclidean
|
| 271 |
+
value: 0.8668222027396277
|
| 272 |
+
name: Spearman Euclidean
|
| 273 |
+
- type: pearson_dot
|
| 274 |
+
value: 0.7733853267769795
|
| 275 |
+
name: Pearson Dot
|
| 276 |
+
- type: spearman_dot
|
| 277 |
+
value: 0.775678170624028
|
| 278 |
+
name: Spearman Dot
|
| 279 |
+
- type: pearson_max
|
| 280 |
+
value: 0.8635697556624868
|
| 281 |
+
name: Pearson Max
|
| 282 |
+
- type: spearman_max
|
| 283 |
+
value: 0.8668222027396277
|
| 284 |
+
name: Spearman Max
|
| 285 |
+
- task:
|
| 286 |
+
type: semantic-similarity
|
| 287 |
+
name: Semantic Similarity
|
| 288 |
+
dataset:
|
| 289 |
+
name: sts test 1024
|
| 290 |
+
type: sts-test-1024
|
| 291 |
+
metrics:
|
| 292 |
+
- type: pearson_cosine
|
| 293 |
+
value: 0.8538749625112824
|
| 294 |
+
name: Pearson Cosine
|
| 295 |
+
- type: spearman_cosine
|
| 296 |
+
value: 0.8622934726599119
|
| 297 |
+
name: Spearman Cosine
|
| 298 |
+
- type: pearson_manhattan
|
| 299 |
+
value: 0.8554617861095041
|
| 300 |
+
name: Pearson Manhattan
|
| 301 |
+
- type: spearman_manhattan
|
| 302 |
+
value: 0.8632850500504865
|
| 303 |
+
name: Spearman Manhattan
|
| 304 |
+
- type: pearson_euclidean
|
| 305 |
+
value: 0.8554205957277228
|
| 306 |
+
name: Pearson Euclidean
|
| 307 |
+
- type: spearman_euclidean
|
| 308 |
+
value: 0.8630779166725503
|
| 309 |
+
name: Spearman Euclidean
|
| 310 |
+
- type: pearson_dot
|
| 311 |
+
value: 0.8170146846171837
|
| 312 |
+
name: Pearson Dot
|
| 313 |
+
- type: spearman_dot
|
| 314 |
+
value: 0.8149857685956332
|
| 315 |
+
name: Spearman Dot
|
| 316 |
+
- type: pearson_max
|
| 317 |
+
value: 0.8554617861095041
|
| 318 |
+
name: Pearson Max
|
| 319 |
+
- type: spearman_max
|
| 320 |
+
value: 0.8632850500504865
|
| 321 |
+
name: Spearman Max
|
| 322 |
+
- task:
|
| 323 |
+
type: semantic-similarity
|
| 324 |
+
name: Semantic Similarity
|
| 325 |
+
dataset:
|
| 326 |
+
name: sts test 768
|
| 327 |
+
type: sts-test-768
|
| 328 |
+
metrics:
|
| 329 |
+
- type: pearson_cosine
|
| 330 |
+
value: 0.853820621972726
|
| 331 |
+
name: Pearson Cosine
|
| 332 |
+
- type: spearman_cosine
|
| 333 |
+
value: 0.863198271488271
|
| 334 |
+
name: Spearman Cosine
|
| 335 |
+
- type: pearson_manhattan
|
| 336 |
+
value: 0.8558709278385018
|
| 337 |
+
name: Pearson Manhattan
|
| 338 |
+
- type: spearman_manhattan
|
| 339 |
+
value: 0.8637532036004547
|
| 340 |
+
name: Spearman Manhattan
|
| 341 |
+
- type: pearson_euclidean
|
| 342 |
+
value: 0.8558597695346744
|
| 343 |
+
name: Pearson Euclidean
|
| 344 |
+
- type: spearman_euclidean
|
| 345 |
+
value: 0.8634247094122574
|
| 346 |
+
name: Spearman Euclidean
|
| 347 |
+
- type: pearson_dot
|
| 348 |
+
value: 0.8169163431962185
|
| 349 |
+
name: Pearson Dot
|
| 350 |
+
- type: spearman_dot
|
| 351 |
+
value: 0.8156867907361973
|
| 352 |
+
name: Spearman Dot
|
| 353 |
+
- type: pearson_max
|
| 354 |
+
value: 0.8558709278385018
|
| 355 |
+
name: Pearson Max
|
| 356 |
+
- type: spearman_max
|
| 357 |
+
value: 0.8637532036004547
|
| 358 |
+
name: Spearman Max
|
| 359 |
+
- task:
|
| 360 |
+
type: semantic-similarity
|
| 361 |
+
name: Semantic Similarity
|
| 362 |
+
dataset:
|
| 363 |
+
name: sts test 512
|
| 364 |
+
type: sts-test-512
|
| 365 |
+
metrics:
|
| 366 |
+
- type: pearson_cosine
|
| 367 |
+
value: 0.8502336569709972
|
| 368 |
+
name: Pearson Cosine
|
| 369 |
+
- type: spearman_cosine
|
| 370 |
+
value: 0.8623838162450902
|
| 371 |
+
name: Spearman Cosine
|
| 372 |
+
- type: pearson_manhattan
|
| 373 |
+
value: 0.8547121881183612
|
| 374 |
+
name: Pearson Manhattan
|
| 375 |
+
- type: spearman_manhattan
|
| 376 |
+
value: 0.8628698143219098
|
| 377 |
+
name: Spearman Manhattan
|
| 378 |
+
- type: pearson_euclidean
|
| 379 |
+
value: 0.8546114371189246
|
| 380 |
+
name: Pearson Euclidean
|
| 381 |
+
- type: spearman_euclidean
|
| 382 |
+
value: 0.8625109910600326
|
| 383 |
+
name: Spearman Euclidean
|
| 384 |
+
- type: pearson_dot
|
| 385 |
+
value: 0.8108392647310044
|
| 386 |
+
name: Pearson Dot
|
| 387 |
+
- type: spearman_dot
|
| 388 |
+
value: 0.8103261097232485
|
| 389 |
+
name: Spearman Dot
|
| 390 |
+
- type: pearson_max
|
| 391 |
+
value: 0.8547121881183612
|
| 392 |
+
name: Pearson Max
|
| 393 |
+
- type: spearman_max
|
| 394 |
+
value: 0.8628698143219098
|
| 395 |
+
name: Spearman Max
|
| 396 |
+
- task:
|
| 397 |
+
type: semantic-similarity
|
| 398 |
+
name: Semantic Similarity
|
| 399 |
+
dataset:
|
| 400 |
+
name: sts test 256
|
| 401 |
+
type: sts-test-256
|
| 402 |
+
metrics:
|
| 403 |
+
- type: pearson_cosine
|
| 404 |
+
value: 0.8441242786553879
|
| 405 |
+
name: Pearson Cosine
|
| 406 |
+
- type: spearman_cosine
|
| 407 |
+
value: 0.8582717489671877
|
| 408 |
+
name: Spearman Cosine
|
| 409 |
+
- type: pearson_manhattan
|
| 410 |
+
value: 0.8517415030362573
|
| 411 |
+
name: Pearson Manhattan
|
| 412 |
+
- type: spearman_manhattan
|
| 413 |
+
value: 0.8591688553092182
|
| 414 |
+
name: Spearman Manhattan
|
| 415 |
+
- type: pearson_euclidean
|
| 416 |
+
value: 0.8516965854845419
|
| 417 |
+
name: Pearson Euclidean
|
| 418 |
+
- type: spearman_euclidean
|
| 419 |
+
value: 0.8591770194196562
|
| 420 |
+
name: Spearman Euclidean
|
| 421 |
+
- type: pearson_dot
|
| 422 |
+
value: 0.7901870400809775
|
| 423 |
+
name: Pearson Dot
|
| 424 |
+
- type: spearman_dot
|
| 425 |
+
value: 0.7891397281321177
|
| 426 |
+
name: Spearman Dot
|
| 427 |
+
- type: pearson_max
|
| 428 |
+
value: 0.8517415030362573
|
| 429 |
+
name: Pearson Max
|
| 430 |
+
- type: spearman_max
|
| 431 |
+
value: 0.8591770194196562
|
| 432 |
+
name: Spearman Max
|
| 433 |
+
- task:
|
| 434 |
+
type: semantic-similarity
|
| 435 |
+
name: Semantic Similarity
|
| 436 |
+
dataset:
|
| 437 |
+
name: sts test 128
|
| 438 |
+
type: sts-test-128
|
| 439 |
+
metrics:
|
| 440 |
+
- type: pearson_cosine
|
| 441 |
+
value: 0.8369352495821198
|
| 442 |
+
name: Pearson Cosine
|
| 443 |
+
- type: spearman_cosine
|
| 444 |
+
value: 0.8545806562301762
|
| 445 |
+
name: Spearman Cosine
|
| 446 |
+
- type: pearson_manhattan
|
| 447 |
+
value: 0.8474289413580527
|
| 448 |
+
name: Pearson Manhattan
|
| 449 |
+
- type: spearman_manhattan
|
| 450 |
+
value: 0.8546935424655524
|
| 451 |
+
name: Spearman Manhattan
|
| 452 |
+
- type: pearson_euclidean
|
| 453 |
+
value: 0.8478267316251253
|
| 454 |
+
name: Pearson Euclidean
|
| 455 |
+
- type: spearman_euclidean
|
| 456 |
+
value: 0.8550464936365929
|
| 457 |
+
name: Spearman Euclidean
|
| 458 |
+
- type: pearson_dot
|
| 459 |
+
value: 0.7732663297266509
|
| 460 |
+
name: Pearson Dot
|
| 461 |
+
- type: spearman_dot
|
| 462 |
+
value: 0.7720532782903432
|
| 463 |
+
name: Spearman Dot
|
| 464 |
+
- type: pearson_max
|
| 465 |
+
value: 0.8478267316251253
|
| 466 |
+
name: Pearson Max
|
| 467 |
+
- type: spearman_max
|
| 468 |
+
value: 0.8550464936365929
|
| 469 |
+
name: Spearman Max
|
| 470 |
+
- task:
|
| 471 |
+
type: semantic-similarity
|
| 472 |
+
name: Semantic Similarity
|
| 473 |
+
dataset:
|
| 474 |
+
name: sts test 64
|
| 475 |
+
type: sts-test-64
|
| 476 |
+
metrics:
|
| 477 |
+
- type: pearson_cosine
|
| 478 |
+
value: 0.8282288301025145
|
| 479 |
+
name: Pearson Cosine
|
| 480 |
+
- type: spearman_cosine
|
| 481 |
+
value: 0.8507215646125454
|
| 482 |
+
name: Spearman Cosine
|
| 483 |
+
- type: pearson_manhattan
|
| 484 |
+
value: 0.8404915813802649
|
| 485 |
+
name: Pearson Manhattan
|
| 486 |
+
- type: spearman_manhattan
|
| 487 |
+
value: 0.8482910175231816
|
| 488 |
+
name: Spearman Manhattan
|
| 489 |
+
- type: pearson_euclidean
|
| 490 |
+
value: 0.8425986040609018
|
| 491 |
+
name: Pearson Euclidean
|
| 492 |
+
- type: spearman_euclidean
|
| 493 |
+
value: 0.8498681513437906
|
| 494 |
+
name: Spearman Euclidean
|
| 495 |
+
- type: pearson_dot
|
| 496 |
+
value: 0.7518854418344252
|
| 497 |
+
name: Pearson Dot
|
| 498 |
+
- type: spearman_dot
|
| 499 |
+
value: 0.7518133373839283
|
| 500 |
+
name: Spearman Dot
|
| 501 |
+
- type: pearson_max
|
| 502 |
+
value: 0.8425986040609018
|
| 503 |
+
name: Pearson Max
|
| 504 |
+
- type: spearman_max
|
| 505 |
+
value: 0.8507215646125454
|
| 506 |
+
name: Spearman Max
|
| 507 |
+
---
|
| 508 |
+
|
| 509 |
+
# SentenceTransformer based on aari1995/gbert-large-nli_mix
|
| 510 |
+
|
| 511 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aari1995/gbert-large-nli_mix](https://huggingface.co/aari1995/gbert-large-nli_mix) on the [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 512 |
+
|
| 513 |
+
## Model Details
|
| 514 |
+
|
| 515 |
+
### Model Description
|
| 516 |
+
- **Model Type:** Sentence Transformer
|
| 517 |
+
- **Base model:** [aari1995/gbert-large-nli_mix](https://huggingface.co/aari1995/gbert-large-nli_mix) <!-- at revision 86b82327d5898d81f9b8caafbf228b803f25abc1 -->
|
| 518 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 519 |
+
- **Output Dimensionality:** 1024 tokens
|
| 520 |
+
- **Similarity Function:** Cosine Similarity
|
| 521 |
+
- **Training Dataset:**
|
| 522 |
+
- [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
| 523 |
+
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
|
| 524 |
+
<!-- - **License:** Unknown -->
|
| 525 |
+
|
| 526 |
+
### Model Sources
|
| 527 |
+
|
| 528 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 529 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 530 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 531 |
+
|
| 532 |
+
### Full Model Architecture
|
| 533 |
+
|
| 534 |
+
```
|
| 535 |
+
SentenceTransformer(
|
| 536 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: JinaBertModel
|
| 537 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 538 |
+
)
|
| 539 |
+
```
|
| 540 |
+
|
| 541 |
+
## Usage
|
| 542 |
+
|
| 543 |
+
### Direct Usage (Sentence Transformers)
|
| 544 |
+
|
| 545 |
+
First install the Sentence Transformers library:
|
| 546 |
+
|
| 547 |
+
```bash
|
| 548 |
+
pip install -U sentence-transformers
|
| 549 |
+
```
|
| 550 |
+
|
| 551 |
+
Then you can load this model and run inference.
|
| 552 |
+
```python
|
| 553 |
+
from sentence_transformers import SentenceTransformer
|
| 554 |
+
|
| 555 |
+
# Download from the 🤗 Hub
|
| 556 |
+
model = SentenceTransformer("aari1995/German_Semantic_V3_2_STS_MIX")
|
| 557 |
+
# Run inference
|
| 558 |
+
sentences = [
|
| 559 |
+
'Eine Flagge weht.',
|
| 560 |
+
'Die Flagge bewegte sich in der Luft.',
|
| 561 |
+
'Zwei Personen beobachten das Wasser.',
|
| 562 |
+
]
|
| 563 |
+
embeddings = model.encode(sentences)
|
| 564 |
+
print(embeddings.shape)
|
| 565 |
+
# [3, 1024]
|
| 566 |
+
|
| 567 |
+
# Get the similarity scores for the embeddings
|
| 568 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 569 |
+
print(similarities.shape)
|
| 570 |
+
# [3, 3]
|
| 571 |
+
```
|
| 572 |
+
|
| 573 |
+
<!--
|
| 574 |
+
### Direct Usage (Transformers)
|
| 575 |
+
|
| 576 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 577 |
+
|
| 578 |
+
</details>
|
| 579 |
+
-->
|
| 580 |
+
|
| 581 |
+
<!--
|
| 582 |
+
### Downstream Usage (Sentence Transformers)
|
| 583 |
+
|
| 584 |
+
You can finetune this model on your own dataset.
|
| 585 |
+
|
| 586 |
+
<details><summary>Click to expand</summary>
|
| 587 |
+
|
| 588 |
+
</details>
|
| 589 |
+
-->
|
| 590 |
+
|
| 591 |
+
<!--
|
| 592 |
+
### Out-of-Scope Use
|
| 593 |
+
|
| 594 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 595 |
+
-->
|
| 596 |
+
|
| 597 |
+
## Evaluation
|
| 598 |
+
|
| 599 |
+
### Metrics
|
| 600 |
+
|
| 601 |
+
#### Semantic Similarity
|
| 602 |
+
* Dataset: `sts-dev-1024`
|
| 603 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 604 |
+
|
| 605 |
+
| Metric | Value |
|
| 606 |
+
|:--------------------|:-----------|
|
| 607 |
+
| pearson_cosine | 0.8738 |
|
| 608 |
+
| **spearman_cosine** | **0.8804** |
|
| 609 |
+
| pearson_manhattan | 0.8761 |
|
| 610 |
+
| spearman_manhattan | 0.882 |
|
| 611 |
+
| pearson_euclidean | 0.8762 |
|
| 612 |
+
| spearman_euclidean | 0.8821 |
|
| 613 |
+
| pearson_dot | 0.8383 |
|
| 614 |
+
| spearman_dot | 0.8381 |
|
| 615 |
+
| pearson_max | 0.8762 |
|
| 616 |
+
| spearman_max | 0.8821 |
|
| 617 |
+
|
| 618 |
+
#### Semantic Similarity
|
| 619 |
+
* Dataset: `sts-dev-768`
|
| 620 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 621 |
+
|
| 622 |
+
| Metric | Value |
|
| 623 |
+
|:--------------------|:-----------|
|
| 624 |
+
| pearson_cosine | 0.8729 |
|
| 625 |
+
| **spearman_cosine** | **0.8799** |
|
| 626 |
+
| pearson_manhattan | 0.8751 |
|
| 627 |
+
| spearman_manhattan | 0.881 |
|
| 628 |
+
| pearson_euclidean | 0.8755 |
|
| 629 |
+
| spearman_euclidean | 0.8812 |
|
| 630 |
+
| pearson_dot | 0.8386 |
|
| 631 |
+
| spearman_dot | 0.8388 |
|
| 632 |
+
| pearson_max | 0.8755 |
|
| 633 |
+
| spearman_max | 0.8812 |
|
| 634 |
+
|
| 635 |
+
#### Semantic Similarity
|
| 636 |
+
* Dataset: `sts-dev-512`
|
| 637 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 638 |
+
|
| 639 |
+
| Metric | Value |
|
| 640 |
+
|:--------------------|:-----------|
|
| 641 |
+
| pearson_cosine | 0.8711 |
|
| 642 |
+
| **spearman_cosine** | **0.8786** |
|
| 643 |
+
| pearson_manhattan | 0.8745 |
|
| 644 |
+
| spearman_manhattan | 0.8802 |
|
| 645 |
+
| pearson_euclidean | 0.8751 |
|
| 646 |
+
| spearman_euclidean | 0.8805 |
|
| 647 |
+
| pearson_dot | 0.8321 |
|
| 648 |
+
| spearman_dot | 0.832 |
|
| 649 |
+
| pearson_max | 0.8751 |
|
| 650 |
+
| spearman_max | 0.8805 |
|
| 651 |
+
|
| 652 |
+
#### Semantic Similarity
|
| 653 |
+
* Dataset: `sts-dev-256`
|
| 654 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 655 |
+
|
| 656 |
+
| Metric | Value |
|
| 657 |
+
|:--------------------|:-----------|
|
| 658 |
+
| pearson_cosine | 0.8649 |
|
| 659 |
+
| **spearman_cosine** | **0.8747** |
|
| 660 |
+
| pearson_manhattan | 0.8708 |
|
| 661 |
+
| spearman_manhattan | 0.876 |
|
| 662 |
+
| pearson_euclidean | 0.8719 |
|
| 663 |
+
| spearman_euclidean | 0.8767 |
|
| 664 |
+
| pearson_dot | 0.815 |
|
| 665 |
+
| spearman_dot | 0.8168 |
|
| 666 |
+
| pearson_max | 0.8719 |
|
| 667 |
+
| spearman_max | 0.8767 |
|
| 668 |
+
|
| 669 |
+
#### Semantic Similarity
|
| 670 |
+
* Dataset: `sts-dev-128`
|
| 671 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 672 |
+
|
| 673 |
+
| Metric | Value |
|
| 674 |
+
|:--------------------|:-----------|
|
| 675 |
+
| pearson_cosine | 0.8585 |
|
| 676 |
+
| **spearman_cosine** | **0.8704** |
|
| 677 |
+
| pearson_manhattan | 0.8657 |
|
| 678 |
+
| spearman_manhattan | 0.8697 |
|
| 679 |
+
| pearson_euclidean | 0.8681 |
|
| 680 |
+
| spearman_euclidean | 0.8719 |
|
| 681 |
+
| pearson_dot | 0.8005 |
|
| 682 |
+
| spearman_dot | 0.8022 |
|
| 683 |
+
| pearson_max | 0.8681 |
|
| 684 |
+
| spearman_max | 0.8719 |
|
| 685 |
+
|
| 686 |
+
#### Semantic Similarity
|
| 687 |
+
* Dataset: `sts-dev-64`
|
| 688 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 689 |
+
|
| 690 |
+
| Metric | Value |
|
| 691 |
+
|:--------------------|:-----------|
|
| 692 |
+
| pearson_cosine | 0.8483 |
|
| 693 |
+
| **spearman_cosine** | **0.8652** |
|
| 694 |
+
| pearson_manhattan | 0.8596 |
|
| 695 |
+
| spearman_manhattan | 0.8633 |
|
| 696 |
+
| pearson_euclidean | 0.8636 |
|
| 697 |
+
| spearman_euclidean | 0.8668 |
|
| 698 |
+
| pearson_dot | 0.7734 |
|
| 699 |
+
| spearman_dot | 0.7757 |
|
| 700 |
+
| pearson_max | 0.8636 |
|
| 701 |
+
| spearman_max | 0.8668 |
|
| 702 |
+
|
| 703 |
+
#### Semantic Similarity
|
| 704 |
+
* Dataset: `sts-test-1024`
|
| 705 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 706 |
+
|
| 707 |
+
| Metric | Value |
|
| 708 |
+
|:--------------------|:-----------|
|
| 709 |
+
| pearson_cosine | 0.8539 |
|
| 710 |
+
| **spearman_cosine** | **0.8623** |
|
| 711 |
+
| pearson_manhattan | 0.8555 |
|
| 712 |
+
| spearman_manhattan | 0.8633 |
|
| 713 |
+
| pearson_euclidean | 0.8554 |
|
| 714 |
+
| spearman_euclidean | 0.8631 |
|
| 715 |
+
| pearson_dot | 0.817 |
|
| 716 |
+
| spearman_dot | 0.815 |
|
| 717 |
+
| pearson_max | 0.8555 |
|
| 718 |
+
| spearman_max | 0.8633 |
|
| 719 |
+
|
| 720 |
+
#### Semantic Similarity
|
| 721 |
+
* Dataset: `sts-test-768`
|
| 722 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 723 |
+
|
| 724 |
+
| Metric | Value |
|
| 725 |
+
|:--------------------|:-----------|
|
| 726 |
+
| pearson_cosine | 0.8538 |
|
| 727 |
+
| **spearman_cosine** | **0.8632** |
|
| 728 |
+
| pearson_manhattan | 0.8559 |
|
| 729 |
+
| spearman_manhattan | 0.8638 |
|
| 730 |
+
| pearson_euclidean | 0.8559 |
|
| 731 |
+
| spearman_euclidean | 0.8634 |
|
| 732 |
+
| pearson_dot | 0.8169 |
|
| 733 |
+
| spearman_dot | 0.8157 |
|
| 734 |
+
| pearson_max | 0.8559 |
|
| 735 |
+
| spearman_max | 0.8638 |
|
| 736 |
+
|
| 737 |
+
#### Semantic Similarity
|
| 738 |
+
* Dataset: `sts-test-512`
|
| 739 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 740 |
+
|
| 741 |
+
| Metric | Value |
|
| 742 |
+
|:--------------------|:-----------|
|
| 743 |
+
| pearson_cosine | 0.8502 |
|
| 744 |
+
| **spearman_cosine** | **0.8624** |
|
| 745 |
+
| pearson_manhattan | 0.8547 |
|
| 746 |
+
| spearman_manhattan | 0.8629 |
|
| 747 |
+
| pearson_euclidean | 0.8546 |
|
| 748 |
+
| spearman_euclidean | 0.8625 |
|
| 749 |
+
| pearson_dot | 0.8108 |
|
| 750 |
+
| spearman_dot | 0.8103 |
|
| 751 |
+
| pearson_max | 0.8547 |
|
| 752 |
+
| spearman_max | 0.8629 |
|
| 753 |
+
|
| 754 |
+
#### Semantic Similarity
|
| 755 |
+
* Dataset: `sts-test-256`
|
| 756 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 757 |
+
|
| 758 |
+
| Metric | Value |
|
| 759 |
+
|:--------------------|:-----------|
|
| 760 |
+
| pearson_cosine | 0.8441 |
|
| 761 |
+
| **spearman_cosine** | **0.8583** |
|
| 762 |
+
| pearson_manhattan | 0.8517 |
|
| 763 |
+
| spearman_manhattan | 0.8592 |
|
| 764 |
+
| pearson_euclidean | 0.8517 |
|
| 765 |
+
| spearman_euclidean | 0.8592 |
|
| 766 |
+
| pearson_dot | 0.7902 |
|
| 767 |
+
| spearman_dot | 0.7891 |
|
| 768 |
+
| pearson_max | 0.8517 |
|
| 769 |
+
| spearman_max | 0.8592 |
|
| 770 |
+
|
| 771 |
+
#### Semantic Similarity
|
| 772 |
+
* Dataset: `sts-test-128`
|
| 773 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 774 |
+
|
| 775 |
+
| Metric | Value |
|
| 776 |
+
|:--------------------|:-----------|
|
| 777 |
+
| pearson_cosine | 0.8369 |
|
| 778 |
+
| **spearman_cosine** | **0.8546** |
|
| 779 |
+
| pearson_manhattan | 0.8474 |
|
| 780 |
+
| spearman_manhattan | 0.8547 |
|
| 781 |
+
| pearson_euclidean | 0.8478 |
|
| 782 |
+
| spearman_euclidean | 0.855 |
|
| 783 |
+
| pearson_dot | 0.7733 |
|
| 784 |
+
| spearman_dot | 0.7721 |
|
| 785 |
+
| pearson_max | 0.8478 |
|
| 786 |
+
| spearman_max | 0.855 |
|
| 787 |
+
|
| 788 |
+
#### Semantic Similarity
|
| 789 |
+
* Dataset: `sts-test-64`
|
| 790 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 791 |
+
|
| 792 |
+
| Metric | Value |
|
| 793 |
+
|:--------------------|:-----------|
|
| 794 |
+
| pearson_cosine | 0.8282 |
|
| 795 |
+
| **spearman_cosine** | **0.8507** |
|
| 796 |
+
| pearson_manhattan | 0.8405 |
|
| 797 |
+
| spearman_manhattan | 0.8483 |
|
| 798 |
+
| pearson_euclidean | 0.8426 |
|
| 799 |
+
| spearman_euclidean | 0.8499 |
|
| 800 |
+
| pearson_dot | 0.7519 |
|
| 801 |
+
| spearman_dot | 0.7518 |
|
| 802 |
+
| pearson_max | 0.8426 |
|
| 803 |
+
| spearman_max | 0.8507 |
|
| 804 |
+
|
| 805 |
+
<!--
|
| 806 |
+
## Bias, Risks and Limitations
|
| 807 |
+
|
| 808 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 809 |
+
-->
|
| 810 |
+
|
| 811 |
+
<!--
|
| 812 |
+
### Recommendations
|
| 813 |
+
|
| 814 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 815 |
+
-->
|
| 816 |
+
|
| 817 |
+
## Training Details
|
| 818 |
+
|
| 819 |
+
### Training Dataset
|
| 820 |
+
|
| 821 |
+
#### PhilipMay/stsb_multi_mt
|
| 822 |
+
|
| 823 |
+
* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
| 824 |
+
* Size: 22,996 training samples
|
| 825 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 826 |
+
* Approximate statistics based on the first 1000 samples:
|
| 827 |
+
| | sentence1 | sentence2 | score |
|
| 828 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 829 |
+
| type | string | string | float |
|
| 830 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.13 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
| 831 |
+
* Samples:
|
| 832 |
+
| sentence1 | sentence2 | score |
|
| 833 |
+
|:-------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------|
|
| 834 |
+
| <code>schütze wegen mordes an schwarzem us-jugendlichen angeklagt</code> | <code>gedanken zu den rassenbeziehungen unter einem schwarzen präsidenten</code> | <code>0.1599999964237213</code> |
|
| 835 |
+
| <code>fußballspieler kicken einen fußball in das tor.</code> | <code>Ein Fußballspieler schießt ein Tor.</code> | <code>0.7599999904632568</code> |
|
| 836 |
+
| <code>obama lockert abschiebungsregeln für junge einwanderer</code> | <code>usa lockert abschiebebestimmungen für jugendliche: napolitano</code> | <code>0.800000011920929</code> |
|
| 837 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 838 |
+
```json
|
| 839 |
+
{
|
| 840 |
+
"loss": "ContrastiveLoss",
|
| 841 |
+
"matryoshka_dims": [
|
| 842 |
+
1024,
|
| 843 |
+
768,
|
| 844 |
+
512,
|
| 845 |
+
256,
|
| 846 |
+
128,
|
| 847 |
+
64
|
| 848 |
+
],
|
| 849 |
+
"matryoshka_weights": [
|
| 850 |
+
1,
|
| 851 |
+
1,
|
| 852 |
+
1,
|
| 853 |
+
1,
|
| 854 |
+
1,
|
| 855 |
+
1
|
| 856 |
+
],
|
| 857 |
+
"n_dims_per_step": -1
|
| 858 |
+
}
|
| 859 |
+
```
|
| 860 |
+
|
| 861 |
+
### Evaluation Dataset
|
| 862 |
+
|
| 863 |
+
#### PhilipMay/stsb_multi_mt
|
| 864 |
+
|
| 865 |
+
* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
| 866 |
+
* Size: 1,500 evaluation samples
|
| 867 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 868 |
+
* Approximate statistics based on the first 1000 samples:
|
| 869 |
+
| | sentence1 | sentence2 | score |
|
| 870 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 871 |
+
| type | string | string | float |
|
| 872 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 16.54 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.53 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
| 873 |
+
* Samples:
|
| 874 |
+
| sentence1 | sentence2 | score |
|
| 875 |
+
|:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
|
| 876 |
+
| <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
|
| 877 |
+
| <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
|
| 878 |
+
| <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
|
| 879 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 880 |
+
```json
|
| 881 |
+
{
|
| 882 |
+
"loss": "ContrastiveLoss",
|
| 883 |
+
"matryoshka_dims": [
|
| 884 |
+
1024,
|
| 885 |
+
768,
|
| 886 |
+
512,
|
| 887 |
+
256,
|
| 888 |
+
128,
|
| 889 |
+
64
|
| 890 |
+
],
|
| 891 |
+
"matryoshka_weights": [
|
| 892 |
+
1,
|
| 893 |
+
1,
|
| 894 |
+
1,
|
| 895 |
+
1,
|
| 896 |
+
1,
|
| 897 |
+
1
|
| 898 |
+
],
|
| 899 |
+
"n_dims_per_step": -1
|
| 900 |
+
}
|
| 901 |
+
```
|
| 902 |
+
|
| 903 |
+
### Training Hyperparameters
|
| 904 |
+
#### Non-Default Hyperparameters
|
| 905 |
+
|
| 906 |
+
- `eval_strategy`: steps
|
| 907 |
+
- `learning_rate`: 5e-06
|
| 908 |
+
- `num_train_epochs`: 4
|
| 909 |
+
- `warmup_ratio`: 0.1
|
| 910 |
+
|
| 911 |
+
#### All Hyperparameters
|
| 912 |
+
<details><summary>Click to expand</summary>
|
| 913 |
+
|
| 914 |
+
- `overwrite_output_dir`: False
|
| 915 |
+
- `do_predict`: False
|
| 916 |
+
- `eval_strategy`: steps
|
| 917 |
+
- `prediction_loss_only`: True
|
| 918 |
+
- `per_device_train_batch_size`: 8
|
| 919 |
+
- `per_device_eval_batch_size`: 8
|
| 920 |
+
- `per_gpu_train_batch_size`: None
|
| 921 |
+
- `per_gpu_eval_batch_size`: None
|
| 922 |
+
- `gradient_accumulation_steps`: 1
|
| 923 |
+
- `eval_accumulation_steps`: None
|
| 924 |
+
- `learning_rate`: 5e-06
|
| 925 |
+
- `weight_decay`: 0.0
|
| 926 |
+
- `adam_beta1`: 0.9
|
| 927 |
+
- `adam_beta2`: 0.999
|
| 928 |
+
- `adam_epsilon`: 1e-08
|
| 929 |
+
- `max_grad_norm`: 1.0
|
| 930 |
+
- `num_train_epochs`: 4
|
| 931 |
+
- `max_steps`: -1
|
| 932 |
+
- `lr_scheduler_type`: linear
|
| 933 |
+
- `lr_scheduler_kwargs`: {}
|
| 934 |
+
- `warmup_ratio`: 0.1
|
| 935 |
+
- `warmup_steps`: 0
|
| 936 |
+
- `log_level`: passive
|
| 937 |
+
- `log_level_replica`: warning
|
| 938 |
+
- `log_on_each_node`: True
|
| 939 |
+
- `logging_nan_inf_filter`: True
|
| 940 |
+
- `save_safetensors`: True
|
| 941 |
+
- `save_on_each_node`: False
|
| 942 |
+
- `save_only_model`: False
|
| 943 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 944 |
+
- `no_cuda`: False
|
| 945 |
+
- `use_cpu`: False
|
| 946 |
+
- `use_mps_device`: False
|
| 947 |
+
- `seed`: 42
|
| 948 |
+
- `data_seed`: None
|
| 949 |
+
- `jit_mode_eval`: False
|
| 950 |
+
- `use_ipex`: False
|
| 951 |
+
- `bf16`: False
|
| 952 |
+
- `fp16`: False
|
| 953 |
+
- `fp16_opt_level`: O1
|
| 954 |
+
- `half_precision_backend`: auto
|
| 955 |
+
- `bf16_full_eval`: False
|
| 956 |
+
- `fp16_full_eval`: False
|
| 957 |
+
- `tf32`: None
|
| 958 |
+
- `local_rank`: 0
|
| 959 |
+
- `ddp_backend`: None
|
| 960 |
+
- `tpu_num_cores`: None
|
| 961 |
+
- `tpu_metrics_debug`: False
|
| 962 |
+
- `debug`: []
|
| 963 |
+
- `dataloader_drop_last`: False
|
| 964 |
+
- `dataloader_num_workers`: 0
|
| 965 |
+
- `dataloader_prefetch_factor`: None
|
| 966 |
+
- `past_index`: -1
|
| 967 |
+
- `disable_tqdm`: False
|
| 968 |
+
- `remove_unused_columns`: True
|
| 969 |
+
- `label_names`: None
|
| 970 |
+
- `load_best_model_at_end`: False
|
| 971 |
+
- `ignore_data_skip`: False
|
| 972 |
+
- `fsdp`: []
|
| 973 |
+
- `fsdp_min_num_params`: 0
|
| 974 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 975 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 976 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 977 |
+
- `deepspeed`: None
|
| 978 |
+
- `label_smoothing_factor`: 0.0
|
| 979 |
+
- `optim`: adamw_torch
|
| 980 |
+
- `optim_args`: None
|
| 981 |
+
- `adafactor`: False
|
| 982 |
+
- `group_by_length`: False
|
| 983 |
+
- `length_column_name`: length
|
| 984 |
+
- `ddp_find_unused_parameters`: None
|
| 985 |
+
- `ddp_bucket_cap_mb`: None
|
| 986 |
+
- `ddp_broadcast_buffers`: False
|
| 987 |
+
- `dataloader_pin_memory`: True
|
| 988 |
+
- `dataloader_persistent_workers`: False
|
| 989 |
+
- `skip_memory_metrics`: True
|
| 990 |
+
- `use_legacy_prediction_loop`: False
|
| 991 |
+
- `push_to_hub`: False
|
| 992 |
+
- `resume_from_checkpoint`: None
|
| 993 |
+
- `hub_model_id`: None
|
| 994 |
+
- `hub_strategy`: every_save
|
| 995 |
+
- `hub_private_repo`: False
|
| 996 |
+
- `hub_always_push`: False
|
| 997 |
+
- `gradient_checkpointing`: False
|
| 998 |
+
- `gradient_checkpointing_kwargs`: None
|
| 999 |
+
- `include_inputs_for_metrics`: False
|
| 1000 |
+
- `eval_do_concat_batches`: True
|
| 1001 |
+
- `fp16_backend`: auto
|
| 1002 |
+
- `push_to_hub_model_id`: None
|
| 1003 |
+
- `push_to_hub_organization`: None
|
| 1004 |
+
- `mp_parameters`:
|
| 1005 |
+
- `auto_find_batch_size`: False
|
| 1006 |
+
- `full_determinism`: False
|
| 1007 |
+
- `torchdynamo`: None
|
| 1008 |
+
- `ray_scope`: last
|
| 1009 |
+
- `ddp_timeout`: 1800
|
| 1010 |
+
- `torch_compile`: False
|
| 1011 |
+
- `torch_compile_backend`: None
|
| 1012 |
+
- `torch_compile_mode`: None
|
| 1013 |
+
- `dispatch_batches`: None
|
| 1014 |
+
- `split_batches`: None
|
| 1015 |
+
- `include_tokens_per_second`: False
|
| 1016 |
+
- `include_num_input_tokens_seen`: False
|
| 1017 |
+
- `neftune_noise_alpha`: None
|
| 1018 |
+
- `optim_target_modules`: None
|
| 1019 |
+
- `batch_eval_metrics`: False
|
| 1020 |
+
- `eval_on_start`: False
|
| 1021 |
+
- `batch_sampler`: batch_sampler
|
| 1022 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1023 |
+
|
| 1024 |
+
</details>
|
| 1025 |
+
|
| 1026 |
+
### Training Logs
|
| 1027 |
+
<details><summary>Click to expand</summary>
|
| 1028 |
+
|
| 1029 |
+
| Epoch | Step | Training Loss | loss | sts-dev-1024_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-1024_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
| 1030 |
+
|:------:|:-----:|:-------------:|:------:|:----------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
| 1031 |
+
| 0.0348 | 100 | 0.2334 | 0.2530 | 0.8329 | 0.8219 | 0.8274 | 0.8292 | 0.8148 | 0.8317 | - | - | - | - | - | - |
|
| 1032 |
+
| 0.0696 | 200 | 0.1959 | 0.1921 | 0.8285 | 0.8183 | 0.8234 | 0.8250 | 0.8121 | 0.8275 | - | - | - | - | - | - |
|
| 1033 |
+
| 0.1043 | 300 | 0.1468 | 0.1592 | 0.8346 | 0.8267 | 0.8305 | 0.8319 | 0.8227 | 0.8334 | - | - | - | - | - | - |
|
| 1034 |
+
| 0.1391 | 400 | 0.1346 | 0.1511 | 0.8513 | 0.8451 | 0.8486 | 0.8497 | 0.8418 | 0.8505 | - | - | - | - | - | - |
|
| 1035 |
+
| 0.1739 | 500 | 0.1333 | 0.1480 | 0.8590 | 0.8526 | 0.8563 | 0.8576 | 0.8502 | 0.8583 | - | - | - | - | - | - |
|
| 1036 |
+
| 0.2087 | 600 | 0.1328 | 0.1478 | 0.8626 | 0.8557 | 0.8595 | 0.8612 | 0.8530 | 0.8620 | - | - | - | - | - | - |
|
| 1037 |
+
| 0.2435 | 700 | 0.1345 | 0.1451 | 0.8631 | 0.8563 | 0.8599 | 0.8618 | 0.8548 | 0.8626 | - | - | - | - | - | - |
|
| 1038 |
+
| 0.2783 | 800 | 0.1282 | 0.1423 | 0.8705 | 0.8625 | 0.8671 | 0.8692 | 0.8601 | 0.8698 | - | - | - | - | - | - |
|
| 1039 |
+
| 0.3130 | 900 | 0.1317 | 0.1416 | 0.8724 | 0.8639 | 0.8690 | 0.8714 | 0.8619 | 0.8716 | - | - | - | - | - | - |
|
| 1040 |
+
| 0.3478 | 1000 | 0.1295 | 0.1422 | 0.8641 | 0.8577 | 0.8617 | 0.8637 | 0.8556 | 0.8639 | - | - | - | - | - | - |
|
| 1041 |
+
| 0.3826 | 1100 | 0.1267 | 0.1427 | 0.8675 | 0.8603 | 0.8644 | 0.8666 | 0.8581 | 0.8671 | - | - | - | - | - | - |
|
| 1042 |
+
| 0.4174 | 1200 | 0.127 | 0.1417 | 0.8674 | 0.8589 | 0.8635 | 0.8664 | 0.8570 | 0.8671 | - | - | - | - | - | - |
|
| 1043 |
+
| 0.4522 | 1300 | 0.1292 | 0.1419 | 0.8756 | 0.8663 | 0.8711 | 0.8739 | 0.8641 | 0.8748 | - | - | - | - | - | - |
|
| 1044 |
+
| 0.4870 | 1400 | 0.1281 | 0.1411 | 0.8726 | 0.8646 | 0.8686 | 0.8713 | 0.8616 | 0.8721 | - | - | - | - | - | - |
|
| 1045 |
+
| 0.5217 | 1500 | 0.1292 | 0.1407 | 0.8738 | 0.8654 | 0.8698 | 0.8727 | 0.8617 | 0.8739 | - | - | - | - | - | - |
|
| 1046 |
+
| 0.5565 | 1600 | 0.1251 | 0.1419 | 0.8732 | 0.8643 | 0.8686 | 0.8720 | 0.8605 | 0.8731 | - | - | - | - | - | - |
|
| 1047 |
+
| 0.5913 | 1700 | 0.1288 | 0.1412 | 0.8782 | 0.8682 | 0.8731 | 0.8769 | 0.8652 | 0.8779 | - | - | - | - | - | - |
|
| 1048 |
+
| 0.6261 | 1800 | 0.1306 | 0.1405 | 0.8755 | 0.8664 | 0.8710 | 0.8744 | 0.8632 | 0.8751 | - | - | - | - | - | - |
|
| 1049 |
+
| 0.6609 | 1900 | 0.1289 | 0.1410 | 0.8739 | 0.8647 | 0.8691 | 0.8727 | 0.8614 | 0.8736 | - | - | - | - | - | - |
|
| 1050 |
+
| 0.6957 | 2000 | 0.1287 | 0.1403 | 0.8773 | 0.8669 | 0.8719 | 0.8758 | 0.8637 | 0.8769 | - | - | - | - | - | - |
|
| 1051 |
+
| 0.7304 | 2100 | 0.126 | 0.1402 | 0.8773 | 0.8675 | 0.8722 | 0.8758 | 0.8635 | 0.8772 | - | - | - | - | - | - |
|
| 1052 |
+
| 0.7652 | 2200 | 0.1274 | 0.1401 | 0.8799 | 0.8693 | 0.8743 | 0.8784 | 0.8652 | 0.8797 | - | - | - | - | - | - |
|
| 1053 |
+
| 0.8 | 2300 | 0.1234 | 0.1399 | 0.8777 | 0.8686 | 0.8729 | 0.8767 | 0.8650 | 0.8778 | - | - | - | - | - | - |
|
| 1054 |
+
| 0.8348 | 2400 | 0.128 | 0.1401 | 0.8769 | 0.8660 | 0.8712 | 0.8759 | 0.8621 | 0.8768 | - | - | - | - | - | - |
|
| 1055 |
+
| 0.8696 | 2500 | 0.1269 | 0.1403 | 0.8756 | 0.8648 | 0.8698 | 0.8742 | 0.8605 | 0.8750 | - | - | - | - | - | - |
|
| 1056 |
+
| 0.9043 | 2600 | 0.1243 | 0.1401 | 0.8762 | 0.8665 | 0.8711 | 0.8751 | 0.8622 | 0.8760 | - | - | - | - | - | - |
|
| 1057 |
+
| 0.9391 | 2700 | 0.1277 | 0.1406 | 0.8742 | 0.8649 | 0.8693 | 0.8725 | 0.8613 | 0.8738 | - | - | - | - | - | - |
|
| 1058 |
+
| 0.9739 | 2800 | 0.1287 | 0.1394 | 0.8789 | 0.8689 | 0.8738 | 0.8773 | 0.8648 | 0.8785 | - | - | - | - | - | - |
|
| 1059 |
+
| 1.0087 | 2900 | 0.1274 | 0.1397 | 0.8784 | 0.8682 | 0.8731 | 0.8769 | 0.8632 | 0.8782 | - | - | - | - | - | - |
|
| 1060 |
+
| 1.0435 | 3000 | 0.129 | 0.1401 | 0.8800 | 0.8693 | 0.8743 | 0.8782 | 0.8653 | 0.8795 | - | - | - | - | - | - |
|
| 1061 |
+
| 1.0783 | 3100 | 0.121 | 0.1408 | 0.8785 | 0.8682 | 0.8731 | 0.8769 | 0.8638 | 0.8782 | - | - | - | - | - | - |
|
| 1062 |
+
| 1.1130 | 3200 | 0.1249 | 0.1399 | 0.8773 | 0.8668 | 0.8722 | 0.8759 | 0.8625 | 0.8771 | - | - | - | - | - | - |
|
| 1063 |
+
| 1.1478 | 3300 | 0.1252 | 0.1404 | 0.8740 | 0.8643 | 0.8688 | 0.8724 | 0.8593 | 0.8737 | - | - | - | - | - | - |
|
| 1064 |
+
| 1.1826 | 3400 | 0.126 | 0.1398 | 0.8761 | 0.8657 | 0.8707 | 0.8745 | 0.8610 | 0.8758 | - | - | - | - | - | - |
|
| 1065 |
+
| 1.2174 | 3500 | 0.1279 | 0.1400 | 0.8760 | 0.8661 | 0.8708 | 0.8745 | 0.8617 | 0.8759 | - | - | - | - | - | - |
|
| 1066 |
+
| 1.2522 | 3600 | 0.1264 | 0.1399 | 0.8786 | 0.8684 | 0.8734 | 0.8768 | 0.8633 | 0.8783 | - | - | - | - | - | - |
|
| 1067 |
+
| 1.2870 | 3700 | 0.126 | 0.1395 | 0.8789 | 0.8690 | 0.8734 | 0.8773 | 0.8643 | 0.8786 | - | - | - | - | - | - |
|
| 1068 |
+
| 1.3217 | 3800 | 0.1234 | 0.1399 | 0.8777 | 0.8669 | 0.8723 | 0.8760 | 0.8625 | 0.8775 | - | - | - | - | - | - |
|
| 1069 |
+
| 1.3565 | 3900 | 0.1269 | 0.1397 | 0.8777 | 0.8671 | 0.8725 | 0.8760 | 0.8630 | 0.8773 | - | - | - | - | - | - |
|
| 1070 |
+
| 1.3913 | 4000 | 0.1223 | 0.1393 | 0.8806 | 0.8694 | 0.8751 | 0.8789 | 0.8654 | 0.8802 | - | - | - | - | - | - |
|
| 1071 |
+
| 1.4261 | 4100 | 0.1227 | 0.1399 | 0.8775 | 0.8671 | 0.8728 | 0.8764 | 0.8622 | 0.8774 | - | - | - | - | - | - |
|
| 1072 |
+
| 1.4609 | 4200 | 0.1263 | 0.1402 | 0.8771 | 0.8669 | 0.8724 | 0.8756 | 0.8619 | 0.8769 | - | - | - | - | - | - |
|
| 1073 |
+
| 1.4957 | 4300 | 0.1263 | 0.1400 | 0.8781 | 0.8674 | 0.8730 | 0.8766 | 0.8627 | 0.8778 | - | - | - | - | - | - |
|
| 1074 |
+
| 1.5304 | 4400 | 0.1302 | 0.1396 | 0.8778 | 0.8675 | 0.8728 | 0.8761 | 0.8628 | 0.8775 | - | - | - | - | - | - |
|
| 1075 |
+
| 1.5652 | 4500 | 0.1274 | 0.1393 | 0.8789 | 0.8685 | 0.8736 | 0.8770 | 0.8637 | 0.8784 | - | - | - | - | - | - |
|
| 1076 |
+
| 1.6 | 4600 | 0.1273 | 0.1394 | 0.8794 | 0.8683 | 0.8737 | 0.8773 | 0.8637 | 0.8789 | - | - | - | - | - | - |
|
| 1077 |
+
| 1.6348 | 4700 | 0.1297 | 0.1391 | 0.8822 | 0.8712 | 0.8764 | 0.8800 | 0.8666 | 0.8817 | - | - | - | - | - | - |
|
| 1078 |
+
| 1.6696 | 4800 | 0.1249 | 0.1392 | 0.8804 | 0.8694 | 0.8748 | 0.8785 | 0.8643 | 0.8802 | - | - | - | - | - | - |
|
| 1079 |
+
| 1.7043 | 4900 | 0.1286 | 0.1390 | 0.8803 | 0.8693 | 0.8746 | 0.8784 | 0.8643 | 0.8800 | - | - | - | - | - | - |
|
| 1080 |
+
| 1.7391 | 5000 | 0.1271 | 0.1392 | 0.8799 | 0.8697 | 0.8745 | 0.8780 | 0.8645 | 0.8795 | - | - | - | - | - | - |
|
| 1081 |
+
| 1.7739 | 5100 | 0.1293 | 0.1391 | 0.8803 | 0.8702 | 0.8748 | 0.8790 | 0.8648 | 0.8803 | - | - | - | - | - | - |
|
| 1082 |
+
| 1.8087 | 5200 | 0.1233 | 0.1391 | 0.8793 | 0.8692 | 0.8739 | 0.8777 | 0.8639 | 0.8791 | - | - | - | - | - | - |
|
| 1083 |
+
| 1.8435 | 5300 | 0.1239 | 0.1394 | 0.8805 | 0.8705 | 0.8748 | 0.8788 | 0.8656 | 0.8802 | - | - | - | - | - | - |
|
| 1084 |
+
| 1.8783 | 5400 | 0.124 | 0.1392 | 0.8795 | 0.8692 | 0.8742 | 0.8780 | 0.8640 | 0.8792 | - | - | - | - | - | - |
|
| 1085 |
+
| 1.9130 | 5500 | 0.1245 | 0.1390 | 0.8797 | 0.8697 | 0.8744 | 0.8782 | 0.8645 | 0.8794 | - | - | - | - | - | - |
|
| 1086 |
+
| 1.9478 | 5600 | 0.1257 | 0.1391 | 0.8794 | 0.8689 | 0.8741 | 0.8778 | 0.8637 | 0.8791 | - | - | - | - | - | - |
|
| 1087 |
+
| 1.9826 | 5700 | 0.1231 | 0.1389 | 0.8807 | 0.8708 | 0.8756 | 0.8793 | 0.8663 | 0.8804 | - | - | - | - | - | - |
|
| 1088 |
+
| 2.0174 | 5800 | 0.1216 | 0.1390 | 0.8781 | 0.8678 | 0.8733 | 0.8768 | 0.8630 | 0.8779 | - | - | - | - | - | - |
|
| 1089 |
+
| 2.0522 | 5900 | 0.1252 | 0.1387 | 0.8795 | 0.8695 | 0.8745 | 0.8784 | 0.8639 | 0.8794 | - | - | - | - | - | - |
|
| 1090 |
+
| 2.0870 | 6000 | 0.1242 | 0.1387 | 0.8799 | 0.8703 | 0.8749 | 0.8787 | 0.8652 | 0.8798 | - | - | - | - | - | - |
|
| 1091 |
+
| 2.1217 | 6100 | 0.1231 | 0.1392 | 0.8796 | 0.8702 | 0.8748 | 0.8784 | 0.8653 | 0.8795 | - | - | - | - | - | - |
|
| 1092 |
+
| 2.1565 | 6200 | 0.1217 | 0.1391 | 0.8797 | 0.8704 | 0.8746 | 0.8784 | 0.8655 | 0.8794 | - | - | - | - | - | - |
|
| 1093 |
+
| 2.1913 | 6300 | 0.1259 | 0.1389 | 0.8803 | 0.8710 | 0.8756 | 0.8789 | 0.8664 | 0.8800 | - | - | - | - | - | - |
|
| 1094 |
+
| 2.2261 | 6400 | 0.1262 | 0.1386 | 0.8813 | 0.8714 | 0.8762 | 0.8796 | 0.8667 | 0.8809 | - | - | - | - | - | - |
|
| 1095 |
+
| 2.2609 | 6500 | 0.127 | 0.1392 | 0.8793 | 0.8701 | 0.8743 | 0.8778 | 0.8652 | 0.8792 | - | - | - | - | - | - |
|
| 1096 |
+
| 2.2957 | 6600 | 0.1275 | 0.1391 | 0.8806 | 0.8710 | 0.8755 | 0.8788 | 0.8663 | 0.8803 | - | - | - | - | - | - |
|
| 1097 |
+
| 2.3304 | 6700 | 0.1228 | 0.1394 | 0.8795 | 0.8693 | 0.8741 | 0.8774 | 0.8646 | 0.8791 | - | - | - | - | - | - |
|
| 1098 |
+
| 2.3652 | 6800 | 0.1243 | 0.1390 | 0.8803 | 0.8700 | 0.8747 | 0.8783 | 0.8655 | 0.8797 | - | - | - | - | - | - |
|
| 1099 |
+
| 2.4 | 6900 | 0.1292 | 0.1389 | 0.8795 | 0.8697 | 0.8743 | 0.8778 | 0.8650 | 0.8791 | - | - | - | - | - | - |
|
| 1100 |
+
| 2.4348 | 7000 | 0.1238 | 0.1390 | 0.8799 | 0.8697 | 0.8744 | 0.8782 | 0.8648 | 0.8795 | - | - | - | - | - | - |
|
| 1101 |
+
| 2.4696 | 7100 | 0.1246 | 0.1389 | 0.8800 | 0.8695 | 0.8743 | 0.8780 | 0.8649 | 0.8795 | - | - | - | - | - | - |
|
| 1102 |
+
| 2.5043 | 7200 | 0.1265 | 0.1396 | 0.8802 | 0.8695 | 0.8743 | 0.8781 | 0.8647 | 0.8796 | - | - | - | - | - | - |
|
| 1103 |
+
| 2.5391 | 7300 | 0.1229 | 0.1390 | 0.8813 | 0.8708 | 0.8753 | 0.8796 | 0.8665 | 0.8809 | - | - | - | - | - | - |
|
| 1104 |
+
| 2.5739 | 7400 | 0.1244 | 0.1389 | 0.8808 | 0.8706 | 0.8749 | 0.8790 | 0.8665 | 0.8803 | - | - | - | - | - | - |
|
| 1105 |
+
| 2.6087 | 7500 | 0.1223 | 0.1389 | 0.8813 | 0.8709 | 0.8753 | 0.8797 | 0.8662 | 0.8807 | - | - | - | - | - | - |
|
| 1106 |
+
| 2.6435 | 7600 | 0.1268 | 0.1387 | 0.8810 | 0.8704 | 0.8752 | 0.8793 | 0.8659 | 0.8805 | - | - | - | - | - | - |
|
| 1107 |
+
| 2.6783 | 7700 | 0.1218 | 0.1387 | 0.8817 | 0.8710 | 0.8755 | 0.8798 | 0.8665 | 0.8809 | - | - | - | - | - | - |
|
| 1108 |
+
| 2.7130 | 7800 | 0.1225 | 0.1388 | 0.8804 | 0.8700 | 0.8745 | 0.8787 | 0.8653 | 0.8799 | - | - | - | - | - | - |
|
| 1109 |
+
| 2.7478 | 7900 | 0.1263 | 0.1391 | 0.8807 | 0.8703 | 0.8745 | 0.8788 | 0.8654 | 0.8801 | - | - | - | - | - | - |
|
| 1110 |
+
| 2.7826 | 8000 | 0.1261 | 0.1388 | 0.8804 | 0.8698 | 0.8743 | 0.8787 | 0.8652 | 0.8799 | - | - | - | - | - | - |
|
| 1111 |
+
| 2.8174 | 8100 | 0.1267 | 0.1386 | 0.8814 | 0.8707 | 0.8750 | 0.8795 | 0.8658 | 0.8807 | - | - | - | - | - | - |
|
| 1112 |
+
| 2.8522 | 8200 | 0.1236 | 0.1387 | 0.8809 | 0.8703 | 0.8747 | 0.8792 | 0.8659 | 0.8803 | - | - | - | - | - | - |
|
| 1113 |
+
| 2.8870 | 8300 | 0.1222 | 0.1390 | 0.8802 | 0.8696 | 0.8741 | 0.8786 | 0.8649 | 0.8799 | - | - | - | - | - | - |
|
| 1114 |
+
| 2.9217 | 8400 | 0.1236 | 0.1388 | 0.8807 | 0.8700 | 0.8747 | 0.8790 | 0.8653 | 0.8802 | - | - | - | - | - | - |
|
| 1115 |
+
| 2.9565 | 8500 | 0.1233 | 0.1389 | 0.8808 | 0.8705 | 0.8752 | 0.8791 | 0.8659 | 0.8806 | - | - | - | - | - | - |
|
| 1116 |
+
| 2.9913 | 8600 | 0.1262 | 0.1388 | 0.8808 | 0.8704 | 0.8750 | 0.8792 | 0.8658 | 0.8805 | - | - | - | - | - | - |
|
| 1117 |
+
| 3.0261 | 8700 | 0.1277 | 0.1388 | 0.8795 | 0.8690 | 0.8737 | 0.8778 | 0.8640 | 0.8791 | - | - | - | - | - | - |
|
| 1118 |
+
| 3.0609 | 8800 | 0.1243 | 0.1387 | 0.8809 | 0.8705 | 0.8751 | 0.8791 | 0.8656 | 0.8803 | - | - | - | - | - | - |
|
| 1119 |
+
| 3.0957 | 8900 | 0.1206 | 0.1387 | 0.8813 | 0.8709 | 0.8754 | 0.8796 | 0.8661 | 0.8807 | - | - | - | - | - | - |
|
| 1120 |
+
| 3.1304 | 9000 | 0.1217 | 0.1388 | 0.8815 | 0.8716 | 0.8758 | 0.8797 | 0.8670 | 0.8810 | - | - | - | - | - | - |
|
| 1121 |
+
| 3.1652 | 9100 | 0.1236 | 0.1390 | 0.8803 | 0.8702 | 0.8744 | 0.8785 | 0.8653 | 0.8798 | - | - | - | - | - | - |
|
| 1122 |
+
| 3.2 | 9200 | 0.1244 | 0.1389 | 0.8799 | 0.8697 | 0.8741 | 0.8783 | 0.8647 | 0.8795 | - | - | - | - | - | - |
|
| 1123 |
+
| 3.2348 | 9300 | 0.1247 | 0.1388 | 0.8802 | 0.8698 | 0.8743 | 0.8785 | 0.8650 | 0.8798 | - | - | - | - | - | - |
|
| 1124 |
+
| 3.2696 | 9400 | 0.1214 | 0.1388 | 0.8810 | 0.8710 | 0.8751 | 0.8793 | 0.8663 | 0.8806 | - | - | - | - | - | - |
|
| 1125 |
+
| 3.3043 | 9500 | 0.121 | 0.1386 | 0.8808 | 0.8709 | 0.8749 | 0.8791 | 0.8662 | 0.8803 | - | - | - | - | - | - |
|
| 1126 |
+
| 3.3391 | 9600 | 0.1205 | 0.1387 | 0.8804 | 0.8705 | 0.8746 | 0.8789 | 0.8655 | 0.8800 | - | - | - | - | - | - |
|
| 1127 |
+
| 3.3739 | 9700 | 0.1203 | 0.1387 | 0.8807 | 0.8708 | 0.8750 | 0.8790 | 0.8661 | 0.8802 | - | - | - | - | - | - |
|
| 1128 |
+
| 3.4087 | 9800 | 0.1239 | 0.1386 | 0.8811 | 0.8711 | 0.8752 | 0.8794 | 0.8663 | 0.8805 | - | - | - | - | - | - |
|
| 1129 |
+
| 3.4435 | 9900 | 0.1197 | 0.1387 | 0.8808 | 0.8709 | 0.8750 | 0.8792 | 0.8662 | 0.8804 | - | - | - | - | - | - |
|
| 1130 |
+
| 3.4783 | 10000 | 0.1252 | 0.1388 | 0.8805 | 0.8704 | 0.8746 | 0.8787 | 0.8657 | 0.8800 | - | - | - | - | - | - |
|
| 1131 |
+
| 3.5130 | 10100 | 0.1229 | 0.1388 | 0.8803 | 0.8703 | 0.8745 | 0.8786 | 0.8654 | 0.8799 | - | - | - | - | - | - |
|
| 1132 |
+
| 3.5478 | 10200 | 0.1258 | 0.1387 | 0.8805 | 0.8704 | 0.8747 | 0.8787 | 0.8653 | 0.8801 | - | - | - | - | - | - |
|
| 1133 |
+
| 3.5826 | 10300 | 0.1232 | 0.1387 | 0.8806 | 0.8706 | 0.8750 | 0.8790 | 0.8656 | 0.8802 | - | - | - | - | - | - |
|
| 1134 |
+
| 3.6174 | 10400 | 0.1286 | 0.1388 | 0.8807 | 0.8706 | 0.8749 | 0.8790 | 0.8656 | 0.8802 | - | - | - | - | - | - |
|
| 1135 |
+
| 3.6522 | 10500 | 0.1248 | 0.1387 | 0.8806 | 0.8706 | 0.8748 | 0.8789 | 0.8653 | 0.8802 | - | - | - | - | - | - |
|
| 1136 |
+
| 3.6870 | 10600 | 0.1277 | 0.1389 | 0.8800 | 0.8699 | 0.8742 | 0.8782 | 0.8647 | 0.8796 | - | - | - | - | - | - |
|
| 1137 |
+
| 3.7217 | 10700 | 0.1219 | 0.1388 | 0.8799 | 0.8697 | 0.8740 | 0.8780 | 0.8645 | 0.8794 | - | - | - | - | - | - |
|
| 1138 |
+
| 3.7565 | 10800 | 0.1269 | 0.1388 | 0.8803 | 0.8702 | 0.8745 | 0.8785 | 0.8649 | 0.8798 | - | - | - | - | - | - |
|
| 1139 |
+
| 3.7913 | 10900 | 0.1289 | 0.1387 | 0.8805 | 0.8703 | 0.8746 | 0.8787 | 0.8651 | 0.8800 | - | - | - | - | - | - |
|
| 1140 |
+
| 3.8261 | 11000 | 0.1234 | 0.1387 | 0.8806 | 0.8704 | 0.8749 | 0.8789 | 0.8653 | 0.8801 | - | - | - | - | - | - |
|
| 1141 |
+
| 3.8609 | 11100 | 0.1229 | 0.1387 | 0.8806 | 0.8706 | 0.8749 | 0.8788 | 0.8654 | 0.8802 | - | - | - | - | - | - |
|
| 1142 |
+
| 3.8957 | 11200 | 0.1266 | 0.1387 | 0.8806 | 0.8706 | 0.8749 | 0.8789 | 0.8655 | 0.8801 | - | - | - | - | - | - |
|
| 1143 |
+
| 3.9304 | 11300 | 0.1253 | 0.1387 | 0.8804 | 0.8704 | 0.8747 | 0.8787 | 0.8653 | 0.8800 | - | - | - | - | - | - |
|
| 1144 |
+
| 3.9652 | 11400 | 0.1279 | 0.1388 | 0.8804 | 0.8704 | 0.8747 | 0.8787 | 0.8653 | 0.8799 | - | - | - | - | - | - |
|
| 1145 |
+
| 4.0 | 11500 | 0.1195 | 0.1388 | 0.8804 | 0.8704 | 0.8747 | 0.8786 | 0.8652 | 0.8799 | 0.8623 | 0.8546 | 0.8583 | 0.8624 | 0.8507 | 0.8632 |
|
| 1146 |
+
|
| 1147 |
+
</details>
|
| 1148 |
+
|
| 1149 |
+
### Framework Versions
|
| 1150 |
+
- Python: 3.9.16
|
| 1151 |
+
- Sentence Transformers: 3.0.0
|
| 1152 |
+
- Transformers: 4.42.0.dev0
|
| 1153 |
+
- PyTorch: 2.2.2+cu118
|
| 1154 |
+
- Accelerate: 0.31.0
|
| 1155 |
+
- Datasets: 2.19.1
|
| 1156 |
+
- Tokenizers: 0.19.1
|
| 1157 |
+
|
| 1158 |
+
## Citation
|
| 1159 |
+
|
| 1160 |
+
### BibTeX
|
| 1161 |
+
|
| 1162 |
+
#### Sentence Transformers
|
| 1163 |
+
```bibtex
|
| 1164 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1165 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1166 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1167 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1168 |
+
month = "11",
|
| 1169 |
+
year = "2019",
|
| 1170 |
+
publisher = "Association for Computational Linguistics",
|
| 1171 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1172 |
+
}
|
| 1173 |
+
```
|
| 1174 |
+
|
| 1175 |
+
#### MatryoshkaLoss
|
| 1176 |
+
```bibtex
|
| 1177 |
+
@misc{kusupati2024matryoshka,
|
| 1178 |
+
title={Matryoshka Representation Learning},
|
| 1179 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
| 1180 |
+
year={2024},
|
| 1181 |
+
eprint={2205.13147},
|
| 1182 |
+
archivePrefix={arXiv},
|
| 1183 |
+
primaryClass={cs.LG}
|
| 1184 |
+
}
|
| 1185 |
+
```
|
| 1186 |
+
|
| 1187 |
+
#### ContrastiveLoss
|
| 1188 |
+
```bibtex
|
| 1189 |
+
@inproceedings{hadsell2006dimensionality,
|
| 1190 |
+
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
| 1191 |
+
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
| 1192 |
+
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
| 1193 |
+
year={2006},
|
| 1194 |
+
volume={2},
|
| 1195 |
+
number={},
|
| 1196 |
+
pages={1735-1742},
|
| 1197 |
+
doi={10.1109/CVPR.2006.100}
|
| 1198 |
+
}
|
| 1199 |
+
```
|
| 1200 |
+
|
| 1201 |
+
<!--
|
| 1202 |
+
## Glossary
|
| 1203 |
+
|
| 1204 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1205 |
+
-->
|
| 1206 |
+
|
| 1207 |
+
<!--
|
| 1208 |
+
## Model Card Authors
|
| 1209 |
+
|
| 1210 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1211 |
+
-->
|
| 1212 |
+
|
| 1213 |
+
<!--
|
| 1214 |
+
## Model Card Contact
|
| 1215 |
+
|
| 1216 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1217 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "aari1995/gbert-large-nli_mix",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"JinaBertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.0,
|
| 7 |
+
"attn_implementation": null,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "aari1995/gbert-large-alibi--configuration_bert.JinaBertConfig",
|
| 10 |
+
"AutoModel": "aari1995/gbert-large-alibi--modeling_bert.JinaBertModel",
|
| 11 |
+
"AutoModelForMaskedLM": "aari1995/gbert-large-alibi--modeling_bert.JinaBertForMaskedLM",
|
| 12 |
+
"AutoModelForSequenceClassification": "aari1995/gbert-large-alibi--modeling_bert.JinaBertForSequenceClassification"
|
| 13 |
+
},
|
| 14 |
+
"classifier_dropout": null,
|
| 15 |
+
"emb_pooler": null,
|
| 16 |
+
"feed_forward_type": "original",
|
| 17 |
+
"hidden_act": "gelu",
|
| 18 |
+
"hidden_dropout_prob": 0.1,
|
| 19 |
+
"hidden_size": 1024,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 4096,
|
| 22 |
+
"layer_norm_eps": 1e-12,
|
| 23 |
+
"max_position_embeddings": 8192,
|
| 24 |
+
"model_type": "bert",
|
| 25 |
+
"num_attention_heads": 16,
|
| 26 |
+
"num_hidden_layers": 24,
|
| 27 |
+
"pad_token_id": 0,
|
| 28 |
+
"position_embedding_type": "alibi",
|
| 29 |
+
"torch_dtype": "float32",
|
| 30 |
+
"transformers_version": "4.42.0.dev0",
|
| 31 |
+
"type_vocab_size": 2,
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 31102
|
| 34 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.0.0",
|
| 4 |
+
"transformers": "4.42.0.dev0",
|
| 5 |
+
"pytorch": "2.2.2+cu118"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:473567809c2a05e488169e164709b9813a7dd1cd34c0c9367e9d5a8cf2018ff4
|
| 3 |
+
size 1340890848
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8192,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"101": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"102": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"103": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"104": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"max_len": 9999999999,
|
| 50 |
+
"max_length": 8192,
|
| 51 |
+
"model_max_length": 8192,
|
| 52 |
+
"never_split": null,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "[PAD]",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "[SEP]",
|
| 58 |
+
"stride": 0,
|
| 59 |
+
"strip_accents": false,
|
| 60 |
+
"tokenize_chinese_chars": true,
|
| 61 |
+
"tokenizer_class": "BertTokenizer",
|
| 62 |
+
"truncation_side": "right",
|
| 63 |
+
"truncation_strategy": "longest_first",
|
| 64 |
+
"unk_token": "[UNK]"
|
| 65 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|