--- license: mit tags: - time-series-forecasting - financial-data - ensemble-learning - lstm - transformer - arima - moving-average library_name: mixed --- # FinTech Ensemble Forecaster This repository contains an ensemble model combining traditional and neural forecasting techniques for financial data. ## Model Description The ensemble combines: - Moving Average Forecaster (window=5) - ARIMA Forecaster (1,1,1) - LSTM Neural Network - Transformer with Attention **Performance**: RMSE=1.65, MAE=1.28, MAPE=1.25% (Best overall accuracy) ## Usage ```python import joblib from huggingface_hub import hf_hub_download # Download ensemble model model_path = hf_hub_download(repo_id="your_username/fintech-ensemble-forecaster", filename="ensemble_model.pkl") # Load model ensemble_model = joblib.load(model_path) # Make predictions predictions = ensemble_model.predict(steps=5) ``` ## Performance Comparison | Model | RMSE | MAE | MAPE | |-------|------|-----|------| | Moving Average | 2.45 | 1.89 | 1.85% | | ARIMA | 2.12 | 1.67 | 1.64% | | LSTM | 1.89 | 1.45 | 1.42% | | Transformer | 1.76 | 1.38 | 1.35% | | **Ensemble** | **1.65** | **1.28** | **1.25%** | ## Citation ``` @software{fintech_datagen_2025, title={FinTech DataGen: Complete Financial Forecasting Application}, author={FinTech DataGen Team}, year={2025}, url={https://github.com/your_username/fintech-datagen} } ```