--- library_name: transformers license: mit base_model: intfloat/e5-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intfloat-e5-base-english-fp16 results: [] --- # intfloat-e5-base-english-fp16 This model is a fine-tuned version of [intfloat/e5-base](https://huggingface.co/intfloat/e5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3367 - Accuracy: 0.8772 - Precision: 0.8771 - Recall: 0.8772 - F1: 0.8760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1413 | 0.3922 | 50 | 0.9915 | 0.6095 | 0.5647 | 0.6095 | 0.5607 | | 0.8772 | 0.7843 | 100 | 0.7794 | 0.6611 | 0.7168 | 0.6611 | 0.6038 | | 0.6664 | 1.1725 | 150 | 0.5313 | 0.8340 | 0.8323 | 0.8340 | 0.8319 | | 0.4674 | 1.5647 | 200 | 0.4284 | 0.8585 | 0.8599 | 0.8585 | 0.8560 | | 0.3922 | 1.9569 | 250 | 0.3721 | 0.8585 | 0.8625 | 0.8585 | 0.8555 | | 0.3105 | 2.3451 | 300 | 0.3367 | 0.8772 | 0.8771 | 0.8772 | 0.8760 | | 0.2881 | 2.7373 | 350 | 0.3321 | 0.8718 | 0.8725 | 0.8718 | 0.8714 | | 0.2545 | 3.1255 | 400 | 0.3565 | 0.8806 | 0.8819 | 0.8806 | 0.8788 | | 0.1997 | 3.5176 | 450 | 0.3320 | 0.8811 | 0.8812 | 0.8811 | 0.8809 | | 0.2236 | 3.9098 | 500 | 0.3384 | 0.8826 | 0.8822 | 0.8826 | 0.8817 | | 0.1454 | 4.2980 | 550 | 0.3805 | 0.8782 | 0.8782 | 0.8782 | 0.8768 | | 0.1494 | 4.6902 | 600 | 0.3793 | 0.8806 | 0.8806 | 0.8806 | 0.8796 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1