--- library_name: transformers license: mit base_model: intfloat/e5-base-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intfloat-e5-base-v2-english-fp16-allagree results: [] --- # intfloat-e5-base-v2-english-fp16-allagree This model is a fine-tuned version of [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1038 - Accuracy: 0.9780 - Precision: 0.9779 - Recall: 0.9780 - F1: 0.9779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8016 | 3.3448 | 50 | 0.3066 | 0.9339 | 0.9343 | 0.9339 | 0.9325 | | 0.1009 | 6.6897 | 100 | 0.1038 | 0.9780 | 0.9779 | 0.9780 | 0.9779 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0