--- language: - zh license: other tags: - mistral - lora - sft - chat - bf16 - taiwan base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation library_name: transformers --- # 數學推理 LLM (Merged) > **重要聲明 (必讀)** > 本模型涉及原住民族文化、知識與表述內容。**未經創作者 Aciang Iku-Silan 明確書面同意**,禁止下載、複製、再散布或用於任何研究與商業用途。 > 詳見本倉庫 `RIGHTS_NOTICE.md`。 本倉庫提供**合併後 (單權重)** 的模型檔,用於繁體中文任務 (教學、文化、知識問答等混合 SFT)。 訓練設備:A100 40GB (bf16),packing=True,max_seq_length=512。 ## 快速開始 ```python # Install libraries (adjust versions as needed) !pip install transformers peft trl accelerate torch bitsandbytes datasets # Load model and tokenizer from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Use PeftModel if this is a LoRA adapter import torch model_id = "aciang/mistral7b-tk-sft-20251019-merged" base_model_id = "mistralai/Mistral-7B-v0.1" # For merged model: if is_merged: tok = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map='auto') else: # For LoRA adapter: tok = AutoTokenizer.from_pretrained(base_model_id) base_model = AutoModelForCausalLM.from_pretrained(base_model_id, torch_dtype=torch.bfloat16, device_map='auto') model = PeftModel.from_pretrained(base_model, model_id) model.eval() # Example Inference prompt = "請用三點條列解釋為何梯度累積可以在小批次下達到大批次效果:" inputs = tok(prompt, return_tensors='pt').to(model.device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7, top_p=0.9, do_sample=True) print(tok.decode(outputs[0], skip_special_tokens=True)) ``` ## 範例任務 以下是模型可能擅長的任務類型範例: 數學解題、文化知識問答 --- Built with ❤️ and 繁體中文