codelion commited on
Commit
16c3835
·
verified ·
1 Parent(s): c0bf284

Upload Chayan 4-model calibrated router (69.05% accuracy)

Browse files
Files changed (6) hide show
  1. README.md +85 -0
  2. config.json +55 -0
  3. examples.json +0 -0
  4. model.safetensors +3 -0
  5. onnx/config.json +24 -0
  6. onnx/model.onnx +3 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: multilingual
3
+ tags:
4
+ - adaptive-classifier
5
+ - text-classification
6
+ - continuous-learning
7
+ license: apache-2.0
8
+ ---
9
+
10
+ # Adaptive Classifier
11
+
12
+ This model is an instance of an [adaptive-classifier](https://github.com/codelion/adaptive-classifier) that allows for continuous learning and dynamic class addition.
13
+
14
+ ## Installation
15
+
16
+ **IMPORTANT:** To use this model, you must first install the `adaptive-classifier` library. You do **NOT** need `trust_remote_code=True`.
17
+
18
+ ```bash
19
+ pip install adaptive-classifier
20
+ ```
21
+
22
+ ## Model Details
23
+
24
+ - Base Model: bert-base-uncased
25
+ - Number of Classes: 4
26
+ - Total Examples: 809
27
+ - Embedding Dimension: 768
28
+
29
+ ## Class Distribution
30
+
31
+ ```
32
+ google/gemini-2.5-flash: 34 examples (4.2%)
33
+ google/gemini-2.5-flash-lite: 99 examples (12.2%)
34
+ openai/gpt-4o: 215 examples (26.6%)
35
+ openai/gpt-4o-mini: 461 examples (57.0%)
36
+ ```
37
+
38
+ ## Usage
39
+
40
+ After installing the `adaptive-classifier` library, you can load and use this model:
41
+
42
+ ```python
43
+ from adaptive_classifier import AdaptiveClassifier
44
+
45
+ # Load the model (no trust_remote_code needed!)
46
+ classifier = AdaptiveClassifier.from_pretrained("adaptive-classifier/model-name")
47
+
48
+ # Make predictions
49
+ text = "Your text here"
50
+ predictions = classifier.predict(text)
51
+ print(predictions) # List of (label, confidence) tuples
52
+
53
+ # Add new examples for continuous learning
54
+ texts = ["Example 1", "Example 2"]
55
+ labels = ["class1", "class2"]
56
+ classifier.add_examples(texts, labels)
57
+ ```
58
+
59
+ **Note:** This model uses the `adaptive-classifier` library distributed via PyPI. You do **NOT** need to set `trust_remote_code=True` - just install the library first.
60
+
61
+ ## Training Details
62
+
63
+ - Training Steps: 1
64
+ - Examples per Class: See distribution above
65
+ - Prototype Memory: Active
66
+ - Neural Adaptation: Active
67
+
68
+ ## Limitations
69
+
70
+ This model:
71
+ - Requires at least 3 examples per class
72
+ - Has a maximum of 1000 examples per class
73
+ - Updates prototypes every 100 examples
74
+
75
+ ## Citation
76
+
77
+ ```bibtex
78
+ @software{adaptive_classifier,
79
+ title = {Adaptive Classifier: Dynamic Text Classification with Continuous Learning},
80
+ author = {Sharma, Asankhaya},
81
+ year = {2025},
82
+ publisher = {GitHub},
83
+ url = {https://github.com/codelion/adaptive-classifier}
84
+ }
85
+ ```
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "batch_size": 32,
4
+ "cost_coefficients": {},
5
+ "cost_function_type": "separable",
6
+ "device_map": "auto",
7
+ "early_stopping_patience": 3,
8
+ "enable_strategic_mode": false,
9
+ "epochs": 10,
10
+ "ewc_lambda": 100.0,
11
+ "gradient_checkpointing": false,
12
+ "learning_rate": 0.001,
13
+ "max_examples_per_class": 1000,
14
+ "max_length": 512,
15
+ "min_confidence": 0.1,
16
+ "min_examples_per_class": 3,
17
+ "neural_weight": 0.3,
18
+ "num_representative_examples": 5,
19
+ "prototype_update_frequency": 100,
20
+ "prototype_weight": 0.7,
21
+ "quantization": null,
22
+ "similarity_threshold": 0.6,
23
+ "strategic_blend_regular_weight": 0.6,
24
+ "strategic_blend_strategic_weight": 0.4,
25
+ "strategic_lambda": 0.1,
26
+ "strategic_prediction_head_weight": 0.5,
27
+ "strategic_prediction_proto_weight": 0.5,
28
+ "strategic_robust_head_weight": 0.2,
29
+ "strategic_robust_proto_weight": 0.8,
30
+ "strategic_training_frequency": 10,
31
+ "warmup_steps": 0
32
+ },
33
+ "embedding_dim": 768,
34
+ "id_to_label": {
35
+ "0": "google/gemini-2.5-flash",
36
+ "1": "google/gemini-2.5-flash-lite",
37
+ "2": "openai/gpt-4o",
38
+ "3": "openai/gpt-4o-mini"
39
+ },
40
+ "label_to_id": {
41
+ "google/gemini-2.5-flash": 0,
42
+ "google/gemini-2.5-flash-lite": 1,
43
+ "openai/gpt-4o": 2,
44
+ "openai/gpt-4o-mini": 3
45
+ },
46
+ "library_name": "adaptive-classifier",
47
+ "model_name": "bert-base-uncased",
48
+ "train_steps": 1,
49
+ "training_history": {
50
+ "google/gemini-2.5-flash": 34,
51
+ "google/gemini-2.5-flash-lite": 99,
52
+ "openai/gpt-4o": 215,
53
+ "openai/gpt-4o-mini": 461
54
+ }
55
+ }
examples.json ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11d0194f8ab9c7fe2190ad378a9a6806f8f5ec8e8331fae30f38611be3d2ca3a
3
+ size 3562952
onnx/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "transformers_version": "4.53.3",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 30522
24
+ }
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5f360a375f3cd7c16ff404927d861d1314cdc350ca20bc3e0da42fc9d846503
3
+ size 435801390