File size: 31,419 Bytes
5657887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aad08e
5657887
 
1aad08e
5657887
 
1aad08e
5657887
 
1aad08e
5657887
 
1aad08e
5657887
 
1aad08e
5657887
 
1aad08e
5657887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aad08e
 
 
 
 
 
 
5657887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80020d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aad08e
80020d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5657887
80020d8
5657887
80020d8
 
 
1aad08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25c098
1aad08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80020d8
 
 
5657887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
---
language:
- en
license: apache-2.0
tags:
- cross-encoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1047690
- loss:BinaryCrossEntropyLoss
base_model: Alibaba-NLP/gte-reranker-modernbert-base
datasets:
- aditeyabaral-redis/langcache-sentencepairs-v1
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- accuracy
- accuracy_threshold
- f1
- f1_threshold
- precision
- recall
- average_precision
model-index:
- name: Redis fine-tuned CrossEncoder model for semantic caching on LangCache
  results:
  - task:
      type: cross-encoder-classification
      name: Cross Encoder Classification
    dataset:
      name: val
      type: val
    metrics:
    - type: accuracy
      value: 0.773111243307555
      name: Accuracy
    - type: accuracy_threshold
      value: 0.7637044787406921
      name: Accuracy Threshold
    - type: f1
      value: 0.6950724637681159
      name: F1
    - type: f1_threshold
      value: 0.04638597369194031
      name: F1 Threshold
    - type: precision
      value: 0.6454912516823688
      name: Precision
    - type: recall
      value: 0.7529042386185243
      name: Recall
    - type: average_precision
      value: 0.7833280130154174
      name: Average Precision
  - task:
      type: cross-encoder-classification
      name: Cross Encoder Classification
    dataset:
      name: test
      type: test
    metrics:
    - type: accuracy
      value: 0.7230292965285952
      name: Accuracy
    - type: accuracy_threshold
      value: 0.9352303147315979
      name: Accuracy Threshold
    - type: f1
      value: 0.7144263194410831
      name: F1
    - type: f1_threshold
      value: 0.9142870903015137
      name: F1 Threshold
    - type: precision
      value: 0.6302559284880577
      name: Precision
    - type: recall
      value: 0.8245437616387337
      name: Recall
    - type: average_precision
      value: 0.6906882331078481
      name: Average Precision
---

# Redis fine-tuned CrossEncoder model for semantic caching on LangCache

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for sentence pair classification.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) <!-- at revision f7481e6055501a30fb19d090657df9ec1f79ab2c -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("aditeyabaral-redis/langcache-reranker-v1-wdwr")
# Get scores for pairs of texts
pairs = [
    ["He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .", '" The foodservice pie business does not fit our long-term growth strategy .'],
    ['Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .', 'His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .'],
    ['The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .', 'The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .'],
    ['The AFL-CIO is waiting until October to decide if it will endorse a candidate .', 'The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .'],
    ['No dates have been set for the civil or the criminal trial .', 'No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    "He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .",
    [
        '" The foodservice pie business does not fit our long-term growth strategy .',
        'His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .',
        'The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .',
        'The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .',
        'No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Classification

* Datasets: `val` and `test`
* Evaluated with [<code>CrossEncoderClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderClassificationEvaluator)

| Metric                | val        | test       |
|:----------------------|:-----------|:-----------|
| accuracy              | 0.7731     | 0.723      |
| accuracy_threshold    | 0.7637     | 0.9352     |
| f1                    | 0.6951     | 0.7144     |
| f1_threshold          | 0.0464     | 0.9143     |
| precision             | 0.6455     | 0.6303     |
| recall                | 0.7529     | 0.8245     |
| **average_precision** | **0.7833** | **0.6907** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1)
* Size: 8,405 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                                        | sentence2                                                                                        | label                                           |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           | int                                             |
  | details | <ul><li>min: 28 characters</li><li>mean: 116.35 characters</li><li>max: 227 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 113.13 characters</li><li>max: 243 characters</li></ul> | <ul><li>0: ~45.80%</li><li>1: ~54.20%</li></ul> |
* Samples:
  | sentence1                                                                                                                             | sentence2                                                                                                                                          | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code>                             | <code>" The foodservice pie business does not fit our long-term growth strategy .</code>                                                           | <code>1</code> |
  | <code>Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .</code>       | <code>His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .</code>                | <code>0</code> |
  | <code>The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .</code> | <code>The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .</code> | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1)
* Size: 8,405 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                                        | sentence2                                                                                        | label                                           |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           | int                                             |
  | details | <ul><li>min: 28 characters</li><li>mean: 116.35 characters</li><li>max: 227 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 113.13 characters</li><li>max: 243 characters</li></ul> | <ul><li>0: ~45.80%</li><li>1: ~54.20%</li></ul> |
* Samples:
  | sentence1                                                                                                                             | sentence2                                                                                                                                          | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code>                             | <code>" The foodservice pie business does not fit our long-term growth strategy .</code>                                                           | <code>1</code> |
  | <code>Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .</code>       | <code>His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .</code>                | <code>0</code> |
  | <code>The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .</code> | <code>The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .</code> | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `learning_rate`: 0.0002
- `weight_decay`: 0.01
- `num_train_epochs`: 20
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `push_to_hub`: True
- `hub_model_id`: aditeyabaral-redis/langcache-reranker-v1-wdwr

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0002
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: aditeyabaral-redis/langcache-reranker-v1-wdwr
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step     | Training Loss | Validation Loss | val_average_precision | test_average_precision |
|:----------:|:--------:|:-------------:|:---------------:|:---------------------:|:----------------------:|
| -1         | -1       | -             | -               | 0.7676                | 0.6907                 |
| 0.1833     | 1000     | 0.3563        | 0.4805          | 0.7831                | -                      |
| **0.3666** | **2000** | **0.2065**    | **0.5394**      | **0.8221**            | **-**                  |
| 0.5499     | 3000     | 0.1983        | 0.5019          | 0.8178                | -                      |
| 0.7331     | 4000     | 0.1923        | 0.5109          | 0.7960                | -                      |
| 0.9164     | 5000     | 0.1886        | 0.4726          | 0.8058                | -                      |
| 1.0997     | 6000     | 0.183         | 0.5062          | 0.8032                | -                      |
| 1.2830     | 7000     | 0.1838        | 0.5152          | 0.8021                | -                      |
| 1.4663     | 8000     | 0.1858        | 0.5105          | 0.7926                | -                      |
| 1.6496     | 9000     | 0.1905        | 0.5052          | 0.7859                | -                      |
| 1.8328     | 10000    | 0.1926        | 0.5316          | 0.7895                | -                      |
| 2.0161     | 11000    | 0.1951        | 0.5340          | 0.7681                | -                      |
| 2.1994     | 12000    | 0.1853        | 0.5573          | 0.7577                | -                      |
| 2.3827     | 13000    | 0.1848        | 0.5530          | 0.7946                | -                      |
| 2.5660     | 14000    | 0.1813        | 0.5754          | 0.7655                | -                      |
| 2.7493     | 15000    | 0.1793        | 0.5316          | 0.7514                | -                      |
| 2.9326     | 16000    | 0.1778        | 0.5230          | 0.7868                | -                      |
| 3.1158     | 17000    | 0.1681        | 0.5246          | 0.7816                | -                      |
| 3.2991     | 18000    | 0.1662        | 0.4946          | 0.7732                | -                      |
| 3.4824     | 19000    | 0.1648        | 0.5262          | 0.7853                | -                      |
| 3.6657     | 20000    | 0.1649        | 0.5007          | 0.7871                | -                      |
| 3.8490     | 21000    | 0.1633        | 0.5368          | 0.7807                | -                      |
| 4.0323     | 22000    | 0.1602        | 0.5559          | 0.7769                | -                      |
| 4.2155     | 23000    | 0.149         | 0.5796          | 0.7697                | -                      |
| 4.3988     | 24000    | 0.1486        | 0.5322          | 0.7608                | -                      |
| 4.5821     | 25000    | 0.1495        | 0.5142          | 0.7713                | -                      |
| 4.7654     | 26000    | 0.1493        | 0.5203          | 0.7866                | -                      |
| 4.9487     | 27000    | 0.1498        | 0.5433          | 0.7738                | -                      |
| 5.1320     | 28000    | 0.1391        | 0.5589          | 0.7803                | -                      |
| 5.3152     | 29000    | 0.1346        | 0.5267          | 0.7713                | -                      |
| 5.4985     | 30000    | 0.1367        | 0.5657          | 0.7803                | -                      |
| 5.6818     | 31000    | 0.1358        | 0.5631          | 0.7646                | -                      |
| 5.8651     | 32000    | 0.136         | 0.5444          | 0.7753                | -                      |
| 6.0484     | 33000    | 0.1346        | 0.5605          | 0.7703                | -                      |
| 6.2317     | 34000    | 0.1222        | 0.5399          | 0.7776                | -                      |
| 6.4150     | 35000    | 0.1241        | 0.5272          | 0.7899                | -                      |
| 6.5982     | 36000    | 0.1243        | 0.6096          | 0.7723                | -                      |
| 6.7815     | 37000    | 0.1266        | 0.5661          | 0.7609                | -                      |
| 6.9648     | 38000    | 0.1246        | 0.5341          | 0.7889                | -                      |
| 7.1481     | 39000    | 0.1128        | 0.6223          | 0.7884                | -                      |
| 7.3314     | 40000    | 0.1124        | 0.5485          | 0.7743                | -                      |
| 7.5147     | 41000    | 0.1127        | 0.5375          | 0.7842                | -                      |
| 7.6979     | 42000    | 0.1122        | 0.5231          | 0.7939                | -                      |
| 7.8812     | 43000    | 0.1141        | 0.5608          | 0.7705                | -                      |
| 8.0645     | 44000    | 0.1088        | 0.6511          | 0.7813                | -                      |
| 8.2478     | 45000    | 0.0998        | 0.6217          | 0.7648                | -                      |
| 8.4311     | 46000    | 0.1017        | 0.6000          | 0.7822                | -                      |
| 8.6144     | 47000    | 0.1031        | 0.5469          | 0.7866                | -                      |
| 8.7977     | 48000    | 0.1012        | 0.5862          | 0.7790                | -                      |
| 8.9809     | 49000    | 0.1031        | 0.5527          | 0.7876                | -                      |
| 9.1642     | 50000    | 0.0921        | 0.5460          | 0.7788                | -                      |
| 9.3475     | 51000    | 0.0909        | 0.5820          | 0.7815                | -                      |
| 9.5308     | 52000    | 0.0919        | 0.5589          | 0.7841                | -                      |
| 9.7141     | 53000    | 0.0939        | 0.5521          | 0.7821                | -                      |
| 9.8974     | 54000    | 0.0925        | 0.6942          | 0.7797                | -                      |
| 10.0806    | 55000    | 0.0863        | 0.6208          | 0.7729                | -                      |
| 10.2639    | 56000    | 0.0803        | 0.6632          | 0.7911                | -                      |
| 10.4472    | 57000    | 0.0797        | 0.6583          | 0.7833                | -                      |
| 10.6305    | 58000    | 0.0824        | 0.6194          | 0.7862                | -                      |
| 10.8138    | 59000    | 0.0829        | 0.6136          | 0.7783                | -                      |
| 10.9971    | 60000    | 0.0819        | 0.5833          | 0.7727                | -                      |
| 11.1804    | 61000    | 0.0693        | 0.6491          | 0.7881                | -                      |
| 11.3636    | 62000    | 0.0709        | 0.6449          | 0.7784                | -                      |
| 11.5469    | 63000    | 0.0721        | 0.6158          | 0.7838                | -                      |
| 11.7302    | 64000    | 0.0721        | 0.6649          | 0.7841                | -                      |
| 11.9135    | 65000    | 0.0732        | 0.6403          | 0.7702                | -                      |
| 12.0968    | 66000    | 0.0679        | 0.6079          | 0.7817                | -                      |
| 12.2801    | 67000    | 0.0615        | 0.6862          | 0.7787                | -                      |
| 12.4633    | 68000    | 0.0629        | 0.7239          | 0.7824                | -                      |
| 12.6466    | 69000    | 0.0643        | 0.6419          | 0.7897                | -                      |
| 12.8299    | 70000    | 0.0635        | 0.6743          | 0.7762                | -                      |
| 13.0132    | 71000    | 0.064         | 0.7135          | 0.7741                | -                      |
| 13.1965    | 72000    | 0.0545        | 0.6643          | 0.7723                | -                      |
| 13.3798    | 73000    | 0.0548        | 0.6508          | 0.7758                | -                      |
| 13.5630    | 74000    | 0.0547        | 0.7003          | 0.7785                | -                      |
| 13.7463    | 75000    | 0.0548        | 0.7170          | 0.7846                | -                      |
| 13.9296    | 76000    | 0.0553        | 0.6917          | 0.7722                | -                      |
| 14.1129    | 77000    | 0.0508        | 0.7000          | 0.7767                | -                      |
| 14.2962    | 78000    | 0.0474        | 0.7336          | 0.7730                | -                      |
| 14.4795    | 79000    | 0.0465        | 0.7122          | 0.7795                | -                      |
| 14.6628    | 80000    | 0.0478        | 0.7321          | 0.7779                | -                      |
| 14.8460    | 81000    | 0.0468        | 0.7112          | 0.7796                | -                      |
| 15.0293    | 82000    | 0.0465        | 0.7534          | 0.7788                | -                      |
| 15.2126    | 83000    | 0.0395        | 0.7238          | 0.7808                | -                      |
| 15.3959    | 84000    | 0.0401        | 0.7686          | 0.7905                | -                      |
| 15.5792    | 85000    | 0.0408        | 0.7296          | 0.7900                | -                      |
| 15.7625    | 86000    | 0.0414        | 0.7533          | 0.7822                | -                      |
| 15.9457    | 87000    | 0.0402        | 0.7748          | 0.7867                | -                      |
| 16.1290    | 88000    | 0.0352        | 0.8267          | 0.7844                | -                      |
| 16.3123    | 89000    | 0.0354        | 0.7488          | 0.7912                | -                      |
| 16.4956    | 90000    | 0.0337        | 0.7850          | 0.7857                | -                      |
| 16.6789    | 91000    | 0.0333        | 0.7812          | 0.7815                | -                      |
| 16.8622    | 92000    | 0.0341        | 0.8184          | 0.7786                | -                      |
| 17.0455    | 93000    | 0.0333        | 0.8166          | 0.7781                | -                      |
| 17.2287    | 94000    | 0.0288        | 0.7980          | 0.7803                | -                      |
| 17.4120    | 95000    | 0.0282        | 0.8195          | 0.7774                | -                      |
| 17.5953    | 96000    | 0.0285        | 0.7864          | 0.7829                | -                      |
| 17.7786    | 97000    | 0.0284        | 0.8000          | 0.7838                | -                      |
| 17.9619    | 98000    | 0.0279        | 0.8118          | 0.7873                | -                      |
| 18.1452    | 99000    | 0.0245        | 0.8727          | 0.7866                | -                      |
| 18.3284    | 100000   | 0.0235        | 0.8695          | 0.7836                | -                      |
| 18.5117    | 101000   | 0.0236        | 0.8246          | 0.7820                | -                      |
| 18.6950    | 102000   | 0.0232        | 0.8543          | 0.7828                | -                      |
| 18.8783    | 103000   | 0.0234        | 0.8840          | 0.7793                | -                      |
| 19.0616    | 104000   | 0.0219        | 0.8804          | 0.7783                | -                      |
| 19.2449    | 105000   | 0.0201        | 0.8885          | 0.7812                | -                      |
| 19.4282    | 106000   | 0.0194        | 0.8901          | 0.7821                | -                      |
| 19.6114    | 107000   | 0.0197        | 0.8850          | 0.7824                | -                      |
| 19.7947    | 108000   | 0.0196        | 0.8835          | 0.7830                | -                      |
| 19.9780    | 109000   | 0.0197        | 0.8803          | 0.7833                | -                      |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.55.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->