--- library_name: peft license: other base_model: Qwen/Qwen3-14B datasets: - r2e-edits/deepswe-swebv-eval-n16-verifier-v1 tags: - llama-factory - lora - generated_from_trainer model-index: - name: verifier results: [] ---
DeepSWE-Verifier
🚀 Democratizing Reinforcement Learning for LLM Agents (RLLM) 🌟

Code Blog X.ai Hugging Face
## DeepSWE-Verifier Overview DeepSWE-Verifier is "critic model" that aids DeepSWE-Preview, a coding agent, for test-time scaling. For each SWE-Bench problem, DeepSWE-Preview generates multiple solutions, which produces multiple code patches, while DeepSWE-Verifier chooses the best code patch.Pairing DeepSWE-Preview with DeepSWE-Verifier can increases SWE-Bench-Verified score by +10% (See Figure 1, Execution-Free Verifier). DeepSWE-Verifier is a fine-tuned/SFT version of [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) Discover more about DeepSWE-Preview's development and capabilities in our [technical blog post](www.google.com).

Figure 1: SWE-Bench Verified Performance w.r.t. different TTS strategies. With hybrid TTS, DeepSWE-Preview achieves 59%, beating the current SOTA open-weights model (SkyWork + TTS, 47%) by 12%. We note that only using execution-based and execution-free verifiers is still effective and can bring 10+% performance.

## Usage See our reproduction script for DeepSWE's [test-time scaling](https://github.com/agentica-project/R2E-Gym/blob/master/reproduction/DEEPSWE_TTS_REPRODUCTION.MD). ## Serving DeepSWE-Verifier We suggest using vLLM to serve: ``` # Stop previous server and start verifier model export MAX_CONTEXT_LEN=76800 vllm serve Qwen/Qwen3-14B \ --max-model-len $MAX_CONTEXT_LEN \ --hf-overrides '{"max_position_embeddings": '$MAX_CONTEXT_LEN'}' \ --enable-lora \ --lora-modules verifier=agentica-org/DeepSWE-Preview \ --port 8000 \ --dtype bfloat16 \ --max-lora-rank 64 \ --tensor-parallel-size 8 ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 ### Framework versions - PEFT 0.12.0 - Transformers 4.51.3 - Pytorch 2.7.1+cu126 - Datasets 3.1.0 - Tokenizers 0.21.2