ahmadfaisal22 commited on
Commit
6931ef9
·
verified ·
1 Parent(s): 3a61a50

Upload LoRA fine-tuned PMB chatbot

Browse files
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: HuggingFaceH4/zephyr-7b-beta
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:HuggingFaceH4/zephyr-7b-beta
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.16.0
adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceH4/zephyr-7b-beta",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "q_proj",
29
+ "o_proj",
30
+ "gate_proj",
31
+ "v_proj",
32
+ "k_proj",
33
+ "down_proj",
34
+ "up_proj"
35
+ ],
36
+ "task_type": "CAUSAL_LM",
37
+ "trainable_token_indices": null,
38
+ "use_dora": false,
39
+ "use_qalora": false,
40
+ "use_rslora": false
41
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3ead7e3066e80cfa4bb53b6a35906b6f925b219be40c98b7a54e110e5904c8f
3
+ size 83945296
chat_template.jinja ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% for message in messages %}
2
+ {% if message['role'] == 'user' %}
3
+ {{ '<|user|>
4
+ ' + message['content'] + eos_token }}
5
+ {% elif message['role'] == 'system' %}
6
+ {{ '<|system|>
7
+ ' + message['content'] + eos_token }}
8
+ {% elif message['role'] == 'assistant' %}
9
+ {{ '<|assistant|>
10
+ ' + message['content'] + eos_token }}
11
+ {% endif %}
12
+ {% if loop.last and add_generation_prompt %}
13
+ {{ '<|assistant|>' }}
14
+ {% endif %}
15
+ {% endfor %}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:320cc78ed5548305583a9f19d074fcdef27aace78e9159ffd3b3982fc66a7963
3
+ size 168149539
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a3ae16c7d9e2b34ead6785863cf981fc52cbf8b02d092ac3bcb981bf9d2917
3
+ size 14645
scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc0984e75370fd0f920a2690fbfe37926629fa7a6666636f32ed583f054361ef
3
+ size 1383
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4316eb011cda40a2369bca90737f198059d303bd27eafac608f4f9eaca5ea4
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [
32
+ "<unk>",
33
+ "<s>",
34
+ "</s>"
35
+ ],
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": false,
38
+ "eos_token": "</s>",
39
+ "extra_special_tokens": {},
40
+ "legacy": true,
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "</s>",
43
+ "sp_model_kwargs": {},
44
+ "spaces_between_special_tokens": false,
45
+ "tokenizer_class": "LlamaTokenizer",
46
+ "truncation_side": "left",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": true
49
+ }
trainer_state.json ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 480,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0625,
14
+ "grad_norm": 2.5752453804016113,
15
+ "learning_rate": 0.00019625,
16
+ "loss": 1.2442,
17
+ "mean_token_accuracy": 0.7333131074905396,
18
+ "num_tokens": 8445.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.125,
23
+ "grad_norm": 2.048556327819824,
24
+ "learning_rate": 0.00019208333333333336,
25
+ "loss": 0.8951,
26
+ "mean_token_accuracy": 0.7932066351175309,
27
+ "num_tokens": 16406.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.1875,
32
+ "grad_norm": 1.801416277885437,
33
+ "learning_rate": 0.00018833333333333335,
34
+ "loss": 0.9104,
35
+ "mean_token_accuracy": 0.7811209857463837,
36
+ "num_tokens": 26390.0,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.25,
41
+ "grad_norm": 2.045475721359253,
42
+ "learning_rate": 0.00018416666666666665,
43
+ "loss": 0.7925,
44
+ "mean_token_accuracy": 0.8067008703947067,
45
+ "num_tokens": 35985.0,
46
+ "step": 40
47
+ },
48
+ {
49
+ "epoch": 0.3125,
50
+ "grad_norm": 1.7908813953399658,
51
+ "learning_rate": 0.00018,
52
+ "loss": 0.7831,
53
+ "mean_token_accuracy": 0.8088378280401229,
54
+ "num_tokens": 45075.0,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.375,
59
+ "grad_norm": 1.80556321144104,
60
+ "learning_rate": 0.00017583333333333334,
61
+ "loss": 0.7615,
62
+ "mean_token_accuracy": 0.8116786539554596,
63
+ "num_tokens": 54190.0,
64
+ "step": 60
65
+ },
66
+ {
67
+ "epoch": 0.4375,
68
+ "grad_norm": 1.7150429487228394,
69
+ "learning_rate": 0.00017166666666666667,
70
+ "loss": 0.7645,
71
+ "mean_token_accuracy": 0.814566045999527,
72
+ "num_tokens": 63103.0,
73
+ "step": 70
74
+ },
75
+ {
76
+ "epoch": 0.5,
77
+ "grad_norm": 2.1259572505950928,
78
+ "learning_rate": 0.0001675,
79
+ "loss": 0.7304,
80
+ "mean_token_accuracy": 0.8198390424251556,
81
+ "num_tokens": 71820.0,
82
+ "step": 80
83
+ },
84
+ {
85
+ "epoch": 0.5625,
86
+ "grad_norm": 1.862838864326477,
87
+ "learning_rate": 0.00016333333333333334,
88
+ "loss": 0.8033,
89
+ "mean_token_accuracy": 0.8004607737064362,
90
+ "num_tokens": 80005.0,
91
+ "step": 90
92
+ },
93
+ {
94
+ "epoch": 0.625,
95
+ "grad_norm": 1.9493387937545776,
96
+ "learning_rate": 0.00015916666666666667,
97
+ "loss": 0.7443,
98
+ "mean_token_accuracy": 0.8172103732824325,
99
+ "num_tokens": 89061.0,
100
+ "step": 100
101
+ },
102
+ {
103
+ "epoch": 0.6875,
104
+ "grad_norm": 1.6027424335479736,
105
+ "learning_rate": 0.000155,
106
+ "loss": 0.6381,
107
+ "mean_token_accuracy": 0.840108859539032,
108
+ "num_tokens": 97490.0,
109
+ "step": 110
110
+ },
111
+ {
112
+ "epoch": 0.75,
113
+ "grad_norm": 1.662534236907959,
114
+ "learning_rate": 0.00015083333333333333,
115
+ "loss": 0.6839,
116
+ "mean_token_accuracy": 0.8289641946554184,
117
+ "num_tokens": 106341.0,
118
+ "step": 120
119
+ },
120
+ {
121
+ "epoch": 0.8125,
122
+ "grad_norm": 1.8097492456436157,
123
+ "learning_rate": 0.00014666666666666666,
124
+ "loss": 0.6565,
125
+ "mean_token_accuracy": 0.8321241825819016,
126
+ "num_tokens": 114882.0,
127
+ "step": 130
128
+ },
129
+ {
130
+ "epoch": 0.875,
131
+ "grad_norm": 1.62300705909729,
132
+ "learning_rate": 0.00014250000000000002,
133
+ "loss": 0.7479,
134
+ "mean_token_accuracy": 0.8141300559043885,
135
+ "num_tokens": 124454.0,
136
+ "step": 140
137
+ },
138
+ {
139
+ "epoch": 0.9375,
140
+ "grad_norm": 1.7561979293823242,
141
+ "learning_rate": 0.00013833333333333333,
142
+ "loss": 0.7585,
143
+ "mean_token_accuracy": 0.8148397266864776,
144
+ "num_tokens": 134032.0,
145
+ "step": 150
146
+ },
147
+ {
148
+ "epoch": 1.0,
149
+ "grad_norm": 1.7069191932678223,
150
+ "learning_rate": 0.00013416666666666666,
151
+ "loss": 0.6857,
152
+ "mean_token_accuracy": 0.8240068614482879,
153
+ "num_tokens": 142641.0,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 1.0625,
158
+ "grad_norm": 1.4199870824813843,
159
+ "learning_rate": 0.00013000000000000002,
160
+ "loss": 0.5387,
161
+ "mean_token_accuracy": 0.855182683467865,
162
+ "num_tokens": 151794.0,
163
+ "step": 170
164
+ },
165
+ {
166
+ "epoch": 1.125,
167
+ "grad_norm": 1.7815680503845215,
168
+ "learning_rate": 0.00012583333333333335,
169
+ "loss": 0.4761,
170
+ "mean_token_accuracy": 0.8708458811044693,
171
+ "num_tokens": 160718.0,
172
+ "step": 180
173
+ },
174
+ {
175
+ "epoch": 1.1875,
176
+ "grad_norm": 1.5737107992172241,
177
+ "learning_rate": 0.00012166666666666667,
178
+ "loss": 0.4533,
179
+ "mean_token_accuracy": 0.8779246717691421,
180
+ "num_tokens": 169265.0,
181
+ "step": 190
182
+ },
183
+ {
184
+ "epoch": 1.25,
185
+ "grad_norm": 1.5212680101394653,
186
+ "learning_rate": 0.00011750000000000001,
187
+ "loss": 0.4593,
188
+ "mean_token_accuracy": 0.8714338272809983,
189
+ "num_tokens": 178575.0,
190
+ "step": 200
191
+ },
192
+ {
193
+ "epoch": 1.3125,
194
+ "grad_norm": 1.6155683994293213,
195
+ "learning_rate": 0.00011333333333333334,
196
+ "loss": 0.4431,
197
+ "mean_token_accuracy": 0.8786879241466522,
198
+ "num_tokens": 187096.0,
199
+ "step": 210
200
+ },
201
+ {
202
+ "epoch": 1.375,
203
+ "grad_norm": 1.5768648386001587,
204
+ "learning_rate": 0.00010916666666666666,
205
+ "loss": 0.472,
206
+ "mean_token_accuracy": 0.8672873705625535,
207
+ "num_tokens": 196017.0,
208
+ "step": 220
209
+ },
210
+ {
211
+ "epoch": 1.4375,
212
+ "grad_norm": 1.7005512714385986,
213
+ "learning_rate": 0.000105,
214
+ "loss": 0.5119,
215
+ "mean_token_accuracy": 0.8617127776145935,
216
+ "num_tokens": 205263.0,
217
+ "step": 230
218
+ },
219
+ {
220
+ "epoch": 1.5,
221
+ "grad_norm": 1.488906741142273,
222
+ "learning_rate": 0.00010083333333333334,
223
+ "loss": 0.4911,
224
+ "mean_token_accuracy": 0.8672636389732361,
225
+ "num_tokens": 214207.0,
226
+ "step": 240
227
+ },
228
+ {
229
+ "epoch": 1.5625,
230
+ "grad_norm": 1.4198739528656006,
231
+ "learning_rate": 9.666666666666667e-05,
232
+ "loss": 0.4975,
233
+ "mean_token_accuracy": 0.8657440841197968,
234
+ "num_tokens": 223185.0,
235
+ "step": 250
236
+ },
237
+ {
238
+ "epoch": 1.625,
239
+ "grad_norm": 1.7783927917480469,
240
+ "learning_rate": 9.250000000000001e-05,
241
+ "loss": 0.4264,
242
+ "mean_token_accuracy": 0.8798577606678009,
243
+ "num_tokens": 231929.0,
244
+ "step": 260
245
+ },
246
+ {
247
+ "epoch": 1.6875,
248
+ "grad_norm": 1.6650081872940063,
249
+ "learning_rate": 8.833333333333333e-05,
250
+ "loss": 0.5051,
251
+ "mean_token_accuracy": 0.8662203460931778,
252
+ "num_tokens": 240854.0,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 1.75,
257
+ "grad_norm": 1.7360109090805054,
258
+ "learning_rate": 8.416666666666668e-05,
259
+ "loss": 0.4374,
260
+ "mean_token_accuracy": 0.8734647989273071,
261
+ "num_tokens": 249782.0,
262
+ "step": 280
263
+ },
264
+ {
265
+ "epoch": 1.8125,
266
+ "grad_norm": 1.6823853254318237,
267
+ "learning_rate": 8e-05,
268
+ "loss": 0.5122,
269
+ "mean_token_accuracy": 0.8641923427581787,
270
+ "num_tokens": 258703.0,
271
+ "step": 290
272
+ },
273
+ {
274
+ "epoch": 1.875,
275
+ "grad_norm": 1.5906269550323486,
276
+ "learning_rate": 7.583333333333334e-05,
277
+ "loss": 0.4609,
278
+ "mean_token_accuracy": 0.870806086063385,
279
+ "num_tokens": 267959.0,
280
+ "step": 300
281
+ },
282
+ {
283
+ "epoch": 1.9375,
284
+ "grad_norm": 1.8694252967834473,
285
+ "learning_rate": 7.166666666666667e-05,
286
+ "loss": 0.453,
287
+ "mean_token_accuracy": 0.8763782948255538,
288
+ "num_tokens": 276882.0,
289
+ "step": 310
290
+ },
291
+ {
292
+ "epoch": 2.0,
293
+ "grad_norm": 2.3819427490234375,
294
+ "learning_rate": 6.750000000000001e-05,
295
+ "loss": 0.461,
296
+ "mean_token_accuracy": 0.870858433842659,
297
+ "num_tokens": 285282.0,
298
+ "step": 320
299
+ },
300
+ {
301
+ "epoch": 2.0625,
302
+ "grad_norm": 1.8256394863128662,
303
+ "learning_rate": 6.333333333333333e-05,
304
+ "loss": 0.2972,
305
+ "mean_token_accuracy": 0.9117195069789886,
306
+ "num_tokens": 293953.0,
307
+ "step": 330
308
+ },
309
+ {
310
+ "epoch": 2.125,
311
+ "grad_norm": 2.1064252853393555,
312
+ "learning_rate": 5.916666666666667e-05,
313
+ "loss": 0.2972,
314
+ "mean_token_accuracy": 0.9105454385280609,
315
+ "num_tokens": 302419.0,
316
+ "step": 340
317
+ },
318
+ {
319
+ "epoch": 2.1875,
320
+ "grad_norm": 1.7595354318618774,
321
+ "learning_rate": 5.500000000000001e-05,
322
+ "loss": 0.2999,
323
+ "mean_token_accuracy": 0.9117335736751556,
324
+ "num_tokens": 311476.0,
325
+ "step": 350
326
+ },
327
+ {
328
+ "epoch": 2.25,
329
+ "grad_norm": 1.5239249467849731,
330
+ "learning_rate": 5.0833333333333333e-05,
331
+ "loss": 0.2678,
332
+ "mean_token_accuracy": 0.9190936297178268,
333
+ "num_tokens": 320231.0,
334
+ "step": 360
335
+ },
336
+ {
337
+ "epoch": 2.3125,
338
+ "grad_norm": 2.142015218734741,
339
+ "learning_rate": 4.666666666666667e-05,
340
+ "loss": 0.2834,
341
+ "mean_token_accuracy": 0.9148718416690826,
342
+ "num_tokens": 329086.0,
343
+ "step": 370
344
+ },
345
+ {
346
+ "epoch": 2.375,
347
+ "grad_norm": 1.3271563053131104,
348
+ "learning_rate": 4.25e-05,
349
+ "loss": 0.2828,
350
+ "mean_token_accuracy": 0.9135244160890579,
351
+ "num_tokens": 338575.0,
352
+ "step": 380
353
+ },
354
+ {
355
+ "epoch": 2.4375,
356
+ "grad_norm": 2.033243417739868,
357
+ "learning_rate": 3.8333333333333334e-05,
358
+ "loss": 0.2644,
359
+ "mean_token_accuracy": 0.9237385660409927,
360
+ "num_tokens": 347842.0,
361
+ "step": 390
362
+ },
363
+ {
364
+ "epoch": 2.5,
365
+ "grad_norm": 2.177577018737793,
366
+ "learning_rate": 3.4166666666666666e-05,
367
+ "loss": 0.2666,
368
+ "mean_token_accuracy": 0.9173466831445694,
369
+ "num_tokens": 356622.0,
370
+ "step": 400
371
+ },
372
+ {
373
+ "epoch": 2.5625,
374
+ "grad_norm": 1.9091131687164307,
375
+ "learning_rate": 3e-05,
376
+ "loss": 0.2547,
377
+ "mean_token_accuracy": 0.9216690093278885,
378
+ "num_tokens": 365430.0,
379
+ "step": 410
380
+ },
381
+ {
382
+ "epoch": 2.625,
383
+ "grad_norm": 1.8569989204406738,
384
+ "learning_rate": 2.5833333333333336e-05,
385
+ "loss": 0.2641,
386
+ "mean_token_accuracy": 0.920384281873703,
387
+ "num_tokens": 374989.0,
388
+ "step": 420
389
+ },
390
+ {
391
+ "epoch": 2.6875,
392
+ "grad_norm": 2.433670997619629,
393
+ "learning_rate": 2.2083333333333333e-05,
394
+ "loss": 0.2929,
395
+ "mean_token_accuracy": 0.9130927324295044,
396
+ "num_tokens": 383763.0,
397
+ "step": 430
398
+ },
399
+ {
400
+ "epoch": 2.75,
401
+ "grad_norm": 1.7513527870178223,
402
+ "learning_rate": 1.7916666666666667e-05,
403
+ "loss": 0.265,
404
+ "mean_token_accuracy": 0.9221676260232925,
405
+ "num_tokens": 392872.0,
406
+ "step": 440
407
+ },
408
+ {
409
+ "epoch": 2.8125,
410
+ "grad_norm": 2.320101737976074,
411
+ "learning_rate": 1.3750000000000002e-05,
412
+ "loss": 0.288,
413
+ "mean_token_accuracy": 0.915841493010521,
414
+ "num_tokens": 401207.0,
415
+ "step": 450
416
+ },
417
+ {
418
+ "epoch": 2.875,
419
+ "grad_norm": 1.8214130401611328,
420
+ "learning_rate": 9.583333333333334e-06,
421
+ "loss": 0.2768,
422
+ "mean_token_accuracy": 0.9163581758737565,
423
+ "num_tokens": 410106.0,
424
+ "step": 460
425
+ },
426
+ {
427
+ "epoch": 2.9375,
428
+ "grad_norm": 2.07955265045166,
429
+ "learning_rate": 5.416666666666667e-06,
430
+ "loss": 0.2594,
431
+ "mean_token_accuracy": 0.924983486533165,
432
+ "num_tokens": 419029.0,
433
+ "step": 470
434
+ },
435
+ {
436
+ "epoch": 3.0,
437
+ "grad_norm": 2.6197588443756104,
438
+ "learning_rate": 1.25e-06,
439
+ "loss": 0.2769,
440
+ "mean_token_accuracy": 0.9173476547002792,
441
+ "num_tokens": 427923.0,
442
+ "step": 480
443
+ }
444
+ ],
445
+ "logging_steps": 10,
446
+ "max_steps": 480,
447
+ "num_input_tokens_seen": 0,
448
+ "num_train_epochs": 3,
449
+ "save_steps": 500,
450
+ "stateful_callbacks": {
451
+ "TrainerControl": {
452
+ "args": {
453
+ "should_epoch_stop": false,
454
+ "should_evaluate": false,
455
+ "should_log": false,
456
+ "should_save": true,
457
+ "should_training_stop": true
458
+ },
459
+ "attributes": {}
460
+ }
461
+ },
462
+ "total_flos": 2.081552109551616e+16,
463
+ "train_batch_size": 2,
464
+ "trial_name": null,
465
+ "trial_params": null
466
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d142a4e903f8125c95aad77e6960ae2cdd942918ef108cf6a254a09fcdd1eac
3
+ size 6161