--- license: apache-2.0 ---
Habr | Project Page | Technical Report (soon) | Original Github | 🤗 Diffusers
-----

Kandinsky 5.0 T2V Lite - Diffusers

This repository provides the 🤗 Diffusers integration for Kandinsky 5.0 T2V Lite - a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. ## Project Updates - 🔥 **2025/09/29**: We have open-sourced `Kandinsky 5.0 T2V Lite` a lite (2B parameters) version of `Kandinsky 5.0 Video` text-to-video generation model. - 🚀 **Diffusers Integration**: Now available with easy-to-use 🤗 Diffusers pipeline! ## Kandinsky 5.0 T2V Lite Kandinsky 5.0 T2V Lite is a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger Wan models (5B and 14B) and offers the best understanding of Russian concepts in the open-source ecosystem. We provide 8 model variants, each optimized for different use cases: * **SFT model** — delivers the highest generation quality * **CFG-distilled** — runs 2× faster * **Diffusion-distilled** — enables low-latency generation with minimal quality loss (6× faster) * **Pretrain model** — designed for fine-tuning by researchers and enthusiasts ## Basic Usage ```python import torch from diffusers import Kandinsky5T2VPipeline from diffusers.utils import export_to_video # Load the pipeline pipe = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-10s-Diffusers", torch_dtype=torch.bfloat16 ) pipe = pipe.to("cuda") pipe.transformer.set_attention_backend("flex") pipe.transformer.compile(mode="max-autotune-no-cudagraphs", dynamic=True) # Generate video prompt = "A cat and a dog baking a cake together in a kitchen." negative_prompt = "Static, 2D cartoon, cartoon, 2d animation, paintings, images, worst quality, low quality, ugly, deformed, walking backwards" output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=512, width=768, num_frames=241, num_inference_steps=50, guidance_scale=1.0, ).frames[0] ## Save the video export_to_video(output, "output.mp4", fps=24, quality=9) ``` ## Using Different Model Variants ```python import torch from diffusers import Kandinsky5T2VPipeline # 5s SFT model (highest quality) pipe_sft = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers", torch_dtype=torch.bfloat16 ) # 5s Distilled 16-step model (fastest) pipe_distill = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers", torch_dtype=torch.bfloat16 ) # 5s No-CFG model (balanced speed/quality) pipe_nocfg = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-5s-Diffusers", torch_dtype=torch.bfloat16 ) # 5s Pretrain model (most diverse) pipe_pretrain = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-pretrain-5s-Diffusers", torch_dtype=torch.bfloat16 ) # 10s SFT model (highest quality) pipe_sft = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers", torch_dtype=torch.bfloat16 ) # 10s Distilled 16-step model (fastest) pipe_distill = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-10s-Diffusers", torch_dtype=torch.bfloat16 ) # 10s No-CFG model (balanced speed/quality) pipe_nocfg = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-10s-Diffusers", torch_dtype=torch.bfloat16 ) # 10s Pretrain model (most diverse) pipe_pretrain = Kandinsky5T2VPipeline.from_pretrained( "ai-forever/Kandinsky-5.0-T2V-Lite-pretrain-10s-Diffusers", torch_dtype=torch.bfloat16 ) ``` ## Architecture Latent diffusion pipeline with Flow Matching. Diffusion Transformer (DiT) as the main generative backbone with cross-attention to text embeddings. Qwen2.5-VL and CLIP provides text embeddings HunyuanVideo 3D VAE encodes/decodes video into a latent space DiT is the main generative module using cross-attention to condition on text
Pipeline Architecture
Model Architecture
## Examples Kandinsky 5.0 T2V Lite SFT
Kandinsky 5.0 T2V Lite Distill
Results Side-by-Side Evaluation The evaluation is based on the expanded prompts from the Movie Gen benchmark.
Distill Side-by-Side Evaluation
VBench Results
Beta Testing You can apply to participate in the beta testing of the Kandinsky Video Lite via the telegram bot. ```bibtex @misc{kandinsky2025, author = {Alexey Letunovskiy, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Dmitrii Mikhailov, Anna Averchenkova, Andrey Shutkin, Julia Agafonova, Olga Kim, Anastasiia Kargapoltseva, Nikita Kiselev, Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Anna Dmitrienko, Anastasia Maltseva, Kirill Chernyshev, Ilia Vasiliev, Viacheslav Vasilev, Vladimir Polovnikov, Yury Kolabushin, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Tatiana Nikulina, Polina Gavrilova, Denis Dimitrov}, title = {Kandinsky 5.0: A family of diffusion models for Video & Image generation}, howpublished = {\url{https://github.com/ai-forever/Kandinsky-5}}, year = 2025 } @misc{mikhailov2025nablanablaneighborhoodadaptiveblocklevel, title={$\nabla$NABLA: Neighborhood Adaptive Block-Level Attention}, author={Dmitrii Mikhailov and Aleksey Letunovskiy and Maria Kovaleva and Vladimir Arkhipkin and Vladimir Korviakov and Vladimir Polovnikov and Viacheslav Vasilev and Evelina Sidorova and Denis Dimitrov}, year={2025}, eprint={2507.13546}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2507.13546}, } ```