Add pipeline tag, library name, and paper link
Browse filesThis PR adds the `pipeline_tag`, `library_name`, and a link to the Hugging Face paper page to the model card. This improves discoverability and provides more complete information about the model.
README.md
CHANGED
|
@@ -1,25 +1,26 @@
|
|
| 1 |
---
|
| 2 |
-
license: mit
|
| 3 |
base_model:
|
| 4 |
- ai-sage/GigaChat-20B-A3B-instruct
|
| 5 |
language:
|
| 6 |
- ru
|
| 7 |
- en
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
-
# GigaChat-20B-A3B-instruct bf16
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
-
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
-
##
|
| 17 |
|
| 18 |
```bash
|
| 19 |
pip install --upgrade transformers torch accelerate bitsandbytes
|
| 20 |
```
|
| 21 |
|
| 22 |
-
|
| 23 |
```python
|
| 24 |
import torch
|
| 25 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
|
@@ -37,5 +38,4 @@ outputs = model.generate(input_tensor.to(model.device))
|
|
| 37 |
|
| 38 |
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False)
|
| 39 |
print(result)
|
| 40 |
-
```
|
| 41 |
-
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
base_model:
|
| 3 |
- ai-sage/GigaChat-20B-A3B-instruct
|
| 4 |
language:
|
| 5 |
- ru
|
| 6 |
- en
|
| 7 |
+
license: mit
|
| 8 |
+
pipeline_tag: text-generation
|
| 9 |
+
library_name: transformers
|
| 10 |
---
|
|
|
|
| 11 |
|
| 12 |
+
# GigaChat-20B-A3B-instruct bf16
|
| 13 |
|
| 14 |
+
This model is part of the GigaChat family of Russian LLMs, based on [ai-sage/GigaChat-20B-A3B-instruct](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct). It supports a context length of 131,000 tokens.
|
| 15 |
|
| 16 |
+
More details are available in [this habr article](https://habr.com/en/companies/sberdevices/articles/865996/) and the original instruct model card. The model was presented in [GigaChat Family: Efficient Russian Language Modeling Through Mixture of Experts Architecture](https://huggingface.co/papers/2506.09440).
|
| 17 |
|
| 18 |
+
## Example Usage with Transformers
|
| 19 |
|
| 20 |
```bash
|
| 21 |
pip install --upgrade transformers torch accelerate bitsandbytes
|
| 22 |
```
|
| 23 |
|
|
|
|
| 24 |
```python
|
| 25 |
import torch
|
| 26 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
|
|
|
| 38 |
|
| 39 |
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False)
|
| 40 |
print(result)
|
| 41 |
+
```
|
|
|