Upload KL3M multi-word tokenizer v2 (128K) - Update README
Browse files
README.md
CHANGED
|
@@ -1,199 +1,301 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
###
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
|
|
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
|
|
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
|
|
|
| 106 |
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
|
| 127 |
-
###
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
-
|
| 149 |
-
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
##
|
| 154 |
|
| 155 |
-
|
| 156 |
|
| 157 |
-
|
| 158 |
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- tokenizer
|
| 7 |
+
- legal
|
| 8 |
+
- bpe
|
| 9 |
+
- byte-pair-encoding
|
| 10 |
+
- multi-word
|
| 11 |
+
- kl3m
|
| 12 |
+
- legal-domain
|
| 13 |
+
- hierarchical
|
| 14 |
+
pipeline_tag: fill-mask
|
| 15 |
library_name: transformers
|
|
|
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# KL3M Multi-Word Tokenizer v2 - 128K
|
| 19 |
|
| 20 |
+
This is the **131,072 token** variant of the KL3M (Kelvin Legal Large Language Model) multi-word tokenizer family v2, optimized for legal domain text with hierarchical vocabulary nesting.
|
| 21 |
|
| 22 |
+
## Overview
|
| 23 |
|
| 24 |
+
The KL3M multi-word tokenizers v2 are an improved family of byte-pair encoding (BPE) tokenizers trained on ~44GB of legal domain text from the [KL3M dataset](https://aleainstitute.ai/work/kl3m/) (copyright-clean legal corpus from the ALEA Institute). These tokenizers:
|
| 25 |
|
| 26 |
+
- **Capture multi-word legal phrases** as single tokens (e.g., "Licensee", "hereinafter", "indemnification")
|
| 27 |
+
- **Use hierarchical vocabulary nesting** where smaller vocabularies are proper subsets of larger ones
|
| 28 |
+
- **Outperform GPT-4 on legal text** with 7.5% better compression on legal documents
|
| 29 |
+
- **Enable vocabulary expansion experiments** and transfer learning across vocabulary sizes
|
| 30 |
|
| 31 |
+
## What's New in v2
|
| 32 |
|
| 33 |
+
- **Cleaner special token design**: 7 special tokens (removed experimental symbols)
|
| 34 |
+
- **Improved legal domain optimization**: Better encoding of common legal terminology
|
| 35 |
+
- **Superior compression**: 5.32 chars/token on legal text (vs 4.92 for GPT-4)
|
| 36 |
+
- **Smaller file sizes**: More efficient tokenizer representation
|
| 37 |
|
| 38 |
+
## Performance Comparison
|
| 39 |
|
| 40 |
+
On a realistic 3,743-character legal document (Software License Agreement):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
| Tokenizer | Vocab Size | Tokens | Chars/Token | vs GPT-4 |
|
| 43 |
+
|-----------|------------|--------|-------------|----------|
|
| 44 |
+
| **KL3M v2-128K** | 131,072 | **704** | **5.32** | **-7.5%** |
|
| 45 |
+
| GPT-4o/5 | 200,019 | 757 | 4.94 | +0.5% |
|
| 46 |
+
| GPT-4 | 100,277 | 761 | 4.92 | baseline |
|
| 47 |
+
| GPT-2 | 50,257 | 858 | 4.36 | +12.7% |
|
| 48 |
+
| KL3M v2-64K | 65,536 | 802 | 4.67 | +5.4% |
|
| 49 |
+
| KL3M v2-32K | 32,768 | 943 | 3.97 | +23.9% |
|
| 50 |
|
| 51 |
+
### Legal Terminology Efficiency
|
| 52 |
|
| 53 |
+
Common legal terms as single tokens (128K vocab):
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
| Term | KL3M v2-128K | GPT-4 | GPT-4o/5 |
|
| 56 |
+
|------|--------------|-------|----------|
|
| 57 |
+
| "Licensee" | 1 token | 2 tokens | 2 tokens |
|
| 58 |
+
| "hereinafter" | 1 token | 3 tokens | 3 tokens |
|
| 59 |
+
| "indemnification" | 1 token | 4 tokens | 3 tokens |
|
| 60 |
+
| "arbitration" | 1 token | 3 tokens | 3 tokens |
|
| 61 |
+
| "WHEREAS" | 1 token | 2 tokens | 2 tokens |
|
| 62 |
+
| "non-exclusive" | 1 token | 2 tokens | 2 tokens |
|
| 63 |
|
| 64 |
+
## Tokenizer Family
|
| 65 |
|
| 66 |
+
This tokenizer is part of a hierarchically nested family. Token IDs in smaller vocabularies are **identical** across all larger vocabularies, enabling seamless vocabulary expansion:
|
| 67 |
|
| 68 |
+
| Vocabulary Size | HuggingFace Repository | File Size |
|
| 69 |
+
|----------------|------------------------|-----------|
|
| 70 |
+
| 4,096 (4K) | [alea-institute/kl3m-multi-word-002-4k](https://huggingface.co/alea-institute/kl3m-multi-word-002-4k) | 248 KB |
|
| 71 |
+
| 8,192 (8K) | [alea-institute/kl3m-multi-word-002-8k](https://huggingface.co/alea-institute/kl3m-multi-word-002-8k) | 516 KB |
|
| 72 |
+
| 16,384 (16K) | [alea-institute/kl3m-multi-word-002-16k](https://huggingface.co/alea-institute/kl3m-multi-word-002-16k) | 1.1 MB |
|
| 73 |
+
| 32,768 (32K) | [alea-institute/kl3m-multi-word-002-32k](https://huggingface.co/alea-institute/kl3m-multi-word-002-32k) | 2.1 MB |
|
| 74 |
+
| 65,536 (64K) | [alea-institute/kl3m-multi-word-002-64k](https://huggingface.co/alea-institute/kl3m-multi-word-002-64k) | 4.4 MB |
|
| 75 |
+
| 131,072 (128K) | [alea-institute/kl3m-multi-word-002-128k](https://huggingface.co/alea-institute/kl3m-multi-word-002-128k) | 8.9 MB |
|
| 76 |
|
| 77 |
+
**→ You are viewing: 131,072 (128K)**
|
| 78 |
|
| 79 |
+
## Key Features
|
| 80 |
|
| 81 |
+
### 1. Multi-Word Tokenization
|
| 82 |
|
| 83 |
+
Legal text contains frequent multi-word phrases that benefit from being treated as single tokens. The larger vocabularies capture increasingly sophisticated legal terminology:
|
| 84 |
|
| 85 |
+
**4K vocabulary examples:**
|
| 86 |
+
- Common legal particles: "herein", "thereof", "pursuant"
|
| 87 |
+
- Basic legal terms: "shall", "party", "agreement"
|
| 88 |
|
| 89 |
+
**32K vocabulary examples:**
|
| 90 |
+
- Complex terms: "Licensee", "Licensor", "jurisdiction", "arbitration"
|
| 91 |
+
- Multi-word phrases: "intellectual property", "force majeure"
|
| 92 |
|
| 93 |
+
**128K vocabulary examples:**
|
| 94 |
+
- Specialized terms: "indemnification", "confidentiality", "non-exclusive"
|
| 95 |
+
- Complete phrases: "representations and warranties", "WHEREAS"
|
| 96 |
|
| 97 |
+
### 2. Hierarchical Vocabulary Nesting
|
| 98 |
|
| 99 |
+
Token IDs 0-4,095 are **identical** across all tokenizer sizes. This enables:
|
| 100 |
|
| 101 |
+
- **Vocabulary expansion during training**: Start with 4K vocab, expand to 32K mid-training
|
| 102 |
+
- **Transfer learning**: Initialize larger vocab models from smaller vocab checkpoints
|
| 103 |
+
- **Controlled ablations**: Compare vocab sizes while maintaining token alignment
|
| 104 |
+
- **Model compression**: Train with large vocab, deploy with smaller vocab
|
| 105 |
|
| 106 |
+
### 3. Legal Domain Optimization
|
| 107 |
|
| 108 |
+
Trained on the KL3M corpus (44GB of legal text):
|
| 109 |
+
- Court opinions and case law
|
| 110 |
+
- Contracts and agreements
|
| 111 |
+
- Patents and IP documents
|
| 112 |
+
- Legal briefs and filings
|
| 113 |
+
- Statutory and regulatory text
|
| 114 |
|
| 115 |
+
This specialized training produces:
|
| 116 |
+
- **Better compression** on legal documents (5.32 chars/token vs 4.92 for GPT-4)
|
| 117 |
+
- **Semantic coherence** for legal multi-word expressions
|
| 118 |
+
- **Reduced sequence lengths** leading to faster inference
|
| 119 |
|
| 120 |
+
### 4. Special Tokens (v2)
|
| 121 |
|
| 122 |
+
Seven essential special tokens for language model training:
|
| 123 |
|
| 124 |
+
| Token | ID | Purpose |
|
| 125 |
+
|-------|----|--------- |
|
| 126 |
+
| `<\|start\|>` | 0 | Start of sequence |
|
| 127 |
+
| `<\|end\|>` | 1 | End of sequence |
|
| 128 |
+
| `<\|pad\|>` | 2 | Padding token |
|
| 129 |
+
| `<\|unk\|>` | 3 | Unknown token |
|
| 130 |
+
| `<\|cls\|>` | 4 | Classification (BERT) |
|
| 131 |
+
| `<\|sep\|>` | 5 | Separator (BERT) |
|
| 132 |
+
| `<\|mask\|>` | 6 | Mask token (MLM) |
|
| 133 |
|
| 134 |
+
*Note: v2 removes experimental symbols (⧈, ⚖, ⏵) from v1 for cleaner design.*
|
| 135 |
|
| 136 |
+
## Usage
|
| 137 |
|
| 138 |
+
### With Transformers
|
| 139 |
|
| 140 |
+
```python
|
| 141 |
+
from transformers import PreTrainedTokenizerFast
|
| 142 |
|
| 143 |
+
# Load tokenizer
|
| 144 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
| 145 |
+
"alea-institute/kl3m-multi-word-002-128k"
|
| 146 |
+
)
|
| 147 |
|
| 148 |
+
# Tokenize text
|
| 149 |
+
text = "The Licensor hereby grants to Licensee a non-exclusive license."
|
| 150 |
+
tokens = tokenizer.encode(text)
|
| 151 |
+
print(f"Tokens: {len(tokens)}")
|
| 152 |
|
| 153 |
+
# Decode
|
| 154 |
+
decoded = tokenizer.decode(tokens)
|
| 155 |
+
print(f"Decoded: {decoded}")
|
| 156 |
+
```
|
| 157 |
|
| 158 |
+
### With tokenizers Library
|
| 159 |
|
| 160 |
+
```python
|
| 161 |
+
from tokenizers import Tokenizer
|
| 162 |
|
| 163 |
+
# Load tokenizer
|
| 164 |
+
tokenizer = Tokenizer.from_pretrained(
|
| 165 |
+
"alea-institute/kl3m-multi-word-002-128k"
|
| 166 |
+
)
|
| 167 |
|
| 168 |
+
# Encode
|
| 169 |
+
encoding = tokenizer.encode(text)
|
| 170 |
+
print(f"Tokens: {encoding.tokens}")
|
| 171 |
+
print(f"IDs: {encoding.ids}")
|
| 172 |
+
```
|
| 173 |
|
| 174 |
+
### Training a Model
|
| 175 |
|
| 176 |
+
```python
|
| 177 |
+
from transformers import AutoConfig, AutoModelForMaskedLM, PreTrainedTokenizerFast
|
| 178 |
|
| 179 |
+
# Load tokenizer
|
| 180 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
| 181 |
+
"alea-institute/kl3m-multi-word-002-128k"
|
| 182 |
+
)
|
| 183 |
|
| 184 |
+
# Create model config
|
| 185 |
+
config = AutoConfig.from_pretrained(
|
| 186 |
+
"bert-base-uncased",
|
| 187 |
+
vocab_size=tokenizer.vocab_size,
|
| 188 |
+
)
|
| 189 |
|
| 190 |
+
# Initialize model
|
| 191 |
+
model = AutoModelForMaskedLM.from_config(config)
|
| 192 |
|
| 193 |
+
# Train with HuggingFace Trainer...
|
| 194 |
+
```
|
| 195 |
|
| 196 |
+
## Technical Details
|
| 197 |
|
| 198 |
+
### Training Corpus
|
| 199 |
|
| 200 |
+
- **Source**: KL3M (Kelvin Legal Large Language Model) dataset
|
| 201 |
+
- **Size**: ~44.2 GB (44,168,540,153 bytes)
|
| 202 |
+
- **Lines**: 1,018,355,750
|
| 203 |
+
- **Words**: 5,997,814,602
|
| 204 |
+
- **Domain**: Legal documents (copyright-clean)
|
| 205 |
|
| 206 |
+
### Training Parameters
|
| 207 |
|
| 208 |
+
```bash
|
| 209 |
+
bbpe train \
|
| 210 |
+
--max-entropy 7.0 \
|
| 211 |
+
--preprocessor unicode-whitespace \
|
| 212 |
+
--preprocessor-probability 0.1 \
|
| 213 |
+
--vocab-size 131072 \
|
| 214 |
+
--family-size 65536 --family-size 32768 \
|
| 215 |
+
--family-size 16384 --family-size 8192 --family-size 4096
|
| 216 |
+
```
|
| 217 |
|
| 218 |
+
- **Max entropy**: 7.0 (balances multi-word phrases with common tokens)
|
| 219 |
+
- **Preprocessing**: Unicode whitespace normalization (10% probability)
|
| 220 |
+
- **Byte fallback**: Enabled (handles any input)
|
| 221 |
|
| 222 |
+
### Vocabulary Structure
|
| 223 |
|
| 224 |
+
- **Base vocabulary**: 256 bytes + 49 extended chars = 305 base tokens
|
| 225 |
+
- **Learned merges**: vocab_size - 305 - 7 (special tokens)
|
| 226 |
+
- **Nesting property**: All tokens in size N exist in size 2N
|
| 227 |
|
| 228 |
+
## Recommendations
|
| 229 |
|
| 230 |
+
### By Use Case
|
| 231 |
|
| 232 |
+
**Legal Document Processing** (contracts, patents, briefs):
|
| 233 |
+
- **Best**: 128K or 64K vocab
|
| 234 |
+
- **Rationale**: Maximum compression of legal terminology
|
| 235 |
+
- **Benefit**: Shorter sequences, faster inference
|
| 236 |
|
| 237 |
+
**Resource-Constrained Environments**:
|
| 238 |
+
- **Best**: 16K or 32K vocab
|
| 239 |
+
- **Rationale**: Good balance of compression and model size
|
| 240 |
+
- **Benefit**: Smaller embedding layers, less memory
|
| 241 |
|
| 242 |
+
**Experimentation / Research**:
|
| 243 |
+
- **Best**: Multiple sizes with vocabulary expansion
|
| 244 |
+
- **Rationale**: Leverage nested structure for novel training strategies
|
| 245 |
+
- **Benefit**: Test curriculum learning, transfer learning
|
| 246 |
|
| 247 |
+
### Model Size Guidelines
|
| 248 |
|
| 249 |
+
Choose vocab size based on your model parameter count:
|
| 250 |
|
| 251 |
+
| Model Size | Recommended Vocab | Embedding Parameters |
|
| 252 |
+
|------------|-------------------|----------------------|
|
| 253 |
+
| <200M params | 4K-8K | 3-6M |
|
| 254 |
+
| 200M-500M params | 8K-16K | 6-13M |
|
| 255 |
+
| 500M-1B params | 16K-32K | 13-26M |
|
| 256 |
+
| 1B-3B params | 32K-64K | 26-52M |
|
| 257 |
+
| >3B params | 64K-128K | 52-104M |
|
| 258 |
|
| 259 |
+
## Limitations
|
| 260 |
|
| 261 |
+
- **Training domain**: Optimized for legal English text; may underperform on other domains
|
| 262 |
+
- **Multilingual**: Trained primarily on English; limited non-English support
|
| 263 |
+
- **Code**: Less optimized for code compared to code-specific tokenizers
|
| 264 |
+
- **Vocabulary size**: Larger vocabs (64K+) require more embedding memory
|
| 265 |
|
| 266 |
+
## Citation
|
| 267 |
|
| 268 |
+
If you use these tokenizers in your research, please cite:
|
| 269 |
|
| 270 |
+
```bibtex
|
| 271 |
+
@misc{kl3m-multi-word-002,
|
| 272 |
+
title={KL3M Multi-Word Tokenizers v2: Hierarchically Nested BPE for Legal Domain},
|
| 273 |
+
author={ALEA Institute},
|
| 274 |
+
year={2025},
|
| 275 |
+
publisher={HuggingFace},
|
| 276 |
+
url={https://huggingface.co/alea-institute/kl3m-multi-word-002-128k}
|
| 277 |
+
}
|
| 278 |
+
```
|
| 279 |
|
| 280 |
+
## License
|
| 281 |
|
| 282 |
+
MIT License
|
| 283 |
|
| 284 |
+
## About ALEA Institute
|
| 285 |
|
| 286 |
+
The [ALEA Institute](https://aleainstitute.ai) develops open-source tools and datasets for legal AI, including the KL3M corpus and multi-word tokenizers.
|
| 287 |
|
| 288 |
+
## Related Resources
|
| 289 |
|
| 290 |
+
- **KL3M Dataset**: [aleainstitute.ai/work/kl3m](https://aleainstitute.ai/work/kl3m/)
|
| 291 |
+
- **bbpe Tokenizer Trainer**: [github.com/microsoft/blingfire](https://github.com/microsoft/blingfire)
|
| 292 |
+
- **v1 Tokenizers**: [alea-institute/kl3m-multi-word-001-*](https://huggingface.co/alea-institute/kl3m-multi-word-001-4k)
|
| 293 |
|
| 294 |
+
## Version History
|
| 295 |
|
| 296 |
+
- **v2 (002 series)**: Improved special token design, better legal optimization
|
| 297 |
+
- **v1 (001 series)**: Initial release with 10 special tokens
|
| 298 |
|
| 299 |
+
## Contact
|
| 300 |
|
| 301 |
+
For questions or issues, please contact: [contact information TBD]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|