Update README.md
Browse files
README.md
CHANGED
|
@@ -24,54 +24,107 @@ It achieves the following results on the evaluation set:
|
|
| 24 |
### Compute your inferences
|
| 25 |
|
| 26 |
```python
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def __init__(
|
| 29 |
self,
|
| 30 |
-
|
|
|
|
| 31 |
sampling_rate: int = 16000,
|
| 32 |
-
|
| 33 |
-
max_length: Optional[int] = None,
|
| 34 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 35 |
-
label2id: Dict = None,
|
| 36 |
-
max_audio_len: int = 5
|
| 37 |
):
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
self.processor = processor
|
| 40 |
self.sampling_rate = sampling_rate
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# different padding methods
|
| 53 |
-
input_features = []
|
| 54 |
-
label_features = []
|
| 55 |
-
for feature in features:
|
| 56 |
-
speech_array, sampling_rate = torchaudio.load(feature["input_values"])
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
input_features.append({"input_values": input_tensor})
|
| 76 |
|
| 77 |
batch = self.processor.pad(
|
|
@@ -85,6 +138,63 @@ class DataColletor:
|
|
| 85 |
return batch
|
| 86 |
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
label2id = {
|
| 89 |
"female": 0,
|
| 90 |
"male": 1
|
|
@@ -97,30 +207,7 @@ id2label = {
|
|
| 97 |
|
| 98 |
num_labels = 2
|
| 99 |
|
| 100 |
-
|
| 101 |
-
model = AutoModelForAudioClassification.from_pretrained(
|
| 102 |
-
pretrained_model_name_or_path="alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech",
|
| 103 |
-
num_labels=num_labels,
|
| 104 |
-
label2id=label2id,
|
| 105 |
-
id2label=id2label,
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
data_collator = DataColletorTrain(
|
| 109 |
-
feature_extractor,
|
| 110 |
-
sampling_rate=16000,
|
| 111 |
-
padding=True,
|
| 112 |
-
label2id=label2id
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
test_dataloader = DataLoader(
|
| 116 |
-
dataset=test_dataset,
|
| 117 |
-
batch_size=16,
|
| 118 |
-
collate_fn=data_collator,
|
| 119 |
-
shuffle=False,
|
| 120 |
-
num_workers=10
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
preds = predict(test_dataloader=test_dataloader, model=model)
|
| 124 |
```
|
| 125 |
|
| 126 |
|
|
|
|
| 24 |
### Compute your inferences
|
| 25 |
|
| 26 |
```python
|
| 27 |
+
import os
|
| 28 |
+
from typing import List, Optional, Union, Dict
|
| 29 |
+
|
| 30 |
+
import tqdm
|
| 31 |
+
import torch
|
| 32 |
+
import torchaudio
|
| 33 |
+
import numpy as np
|
| 34 |
+
import pandas as pd
|
| 35 |
+
from torch import nn
|
| 36 |
+
from torch.utils.data import DataLoader
|
| 37 |
+
from torch.nn import functional as F
|
| 38 |
+
from transformers import (
|
| 39 |
+
AutoFeatureExtractor,
|
| 40 |
+
AutoModelForAudioClassification,
|
| 41 |
+
Wav2Vec2Processor
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class CustomDataset(torch.utils.data.Dataset):
|
| 46 |
def __init__(
|
| 47 |
self,
|
| 48 |
+
dataset: List,
|
| 49 |
+
basedir: Optional[str] = None,
|
| 50 |
sampling_rate: int = 16000,
|
| 51 |
+
max_audio_len: int = 5,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
):
|
| 53 |
+
self.dataset = dataset
|
| 54 |
+
self.basedir = basedir
|
| 55 |
|
|
|
|
| 56 |
self.sampling_rate = sampling_rate
|
| 57 |
+
self.max_audio_len = max_audio_len
|
| 58 |
|
| 59 |
+
def __len__(self):
|
| 60 |
+
"""
|
| 61 |
+
Return the length of the dataset
|
| 62 |
+
"""
|
| 63 |
+
return len(self.dataset)
|
| 64 |
|
| 65 |
+
def _cutorpad(self, audio: np.ndarray) -> np.ndarray:
|
| 66 |
+
"""
|
| 67 |
+
Cut or pad audio to the wished length
|
| 68 |
+
"""
|
| 69 |
+
effective_length = self.sampling_rate * self.max_audio_len
|
| 70 |
+
len_audio = len(audio)
|
| 71 |
|
| 72 |
+
# If audio length is bigger than wished audio length
|
| 73 |
+
if len_audio > effective_length:
|
| 74 |
+
audio = audio[:effective_length]
|
| 75 |
|
| 76 |
+
# Expand one dimension related to the channel dimension
|
| 77 |
+
return audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
|
| 80 |
+
def __getitem__(self, index) -> torch.Tensor:
|
| 81 |
+
"""
|
| 82 |
+
Return the audio and the sampling rate
|
| 83 |
+
"""
|
| 84 |
+
if self.basedir is None:
|
| 85 |
+
filepath = self.dataset[index]
|
| 86 |
+
else:
|
| 87 |
+
filepath = os.path.join(self.basedir, self.dataset[index])
|
| 88 |
+
|
| 89 |
+
speech_array, sr = torchaudio.load(filepath)
|
| 90 |
+
|
| 91 |
+
# Transform to mono
|
| 92 |
+
if speech_array.shape[0] > 1:
|
| 93 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
| 94 |
|
| 95 |
+
if sr != self.sampling_rate:
|
| 96 |
+
transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
|
| 97 |
+
speech_array = transform(speech_array)
|
| 98 |
+
sr = self.sampling_rate
|
| 99 |
|
| 100 |
+
speech_array = speech_array.squeeze().numpy()
|
| 101 |
|
| 102 |
+
# Cut or pad audio
|
| 103 |
+
speech_array = self._cutorpad(speech_array)
|
| 104 |
|
| 105 |
+
return speech_array
|
| 106 |
+
|
| 107 |
+
class CollateFunc:
|
| 108 |
+
def __init__(
|
| 109 |
+
self,
|
| 110 |
+
processor: Wav2Vec2Processor,
|
| 111 |
+
max_length: Optional[int] = None,
|
| 112 |
+
padding: Union[bool, str] = True,
|
| 113 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 114 |
+
sampling_rate: int = 16000,
|
| 115 |
+
):
|
| 116 |
+
self.padding = padding
|
| 117 |
+
self.processor = processor
|
| 118 |
+
self.max_length = max_length
|
| 119 |
+
self.sampling_rate = sampling_rate
|
| 120 |
+
self.pad_to_multiple_of = pad_to_multiple_of
|
| 121 |
|
| 122 |
+
def __call__(self, batch: List):
|
| 123 |
+
input_features = []
|
| 124 |
+
|
| 125 |
+
for audio in batch:
|
| 126 |
+
input_tensor = self.processor(audio, sampling_rate=self.sampling_rate).input_values
|
| 127 |
+
input_tensor = np.squeeze(input_tensor)
|
| 128 |
input_features.append({"input_values": input_tensor})
|
| 129 |
|
| 130 |
batch = self.processor.pad(
|
|
|
|
| 138 |
return batch
|
| 139 |
|
| 140 |
|
| 141 |
+
def predict(test_dataloader, model, device: torch.device):
|
| 142 |
+
"""
|
| 143 |
+
Predict the class of the audio
|
| 144 |
+
"""
|
| 145 |
+
model.to(device)
|
| 146 |
+
model.eval()
|
| 147 |
+
preds = []
|
| 148 |
+
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
for batch in tqdm.tqdm(test_dataloader):
|
| 151 |
+
input_values, attention_mask = batch['input_values'].to(device), batch['attention_mask'].to(device)
|
| 152 |
+
|
| 153 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
| 154 |
+
scores = F.softmax(logits, dim=-1)
|
| 155 |
+
|
| 156 |
+
pred = torch.argmax(scores, dim=1).cpu().detach().numpy()
|
| 157 |
+
|
| 158 |
+
preds.extend(pred)
|
| 159 |
+
|
| 160 |
+
return preds
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def get_gender(model_name_or_path: str, audio_paths: List[str], label2id: Dict, id2label: Dict, device: torch.device):
|
| 164 |
+
num_labels = 2
|
| 165 |
+
|
| 166 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
|
| 167 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
| 168 |
+
pretrained_model_name_or_path=model_name_or_path,
|
| 169 |
+
num_labels=num_labels,
|
| 170 |
+
label2id=label2id,
|
| 171 |
+
id2label=id2label,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
test_dataset = CustomDataset(audio_paths)
|
| 175 |
+
data_collator = CollateFunc(
|
| 176 |
+
processor=feature_extractor,
|
| 177 |
+
padding=True,
|
| 178 |
+
sampling_rate=16000,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
test_dataloader = DataLoader(
|
| 182 |
+
dataset=test_dataset,
|
| 183 |
+
batch_size=16,
|
| 184 |
+
collate_fn=data_collator,
|
| 185 |
+
shuffle=False,
|
| 186 |
+
num_workers=10
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
preds = predict(test_dataloader=test_dataloader, model=model, device=device)
|
| 190 |
+
|
| 191 |
+
return preds
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"
|
| 195 |
+
audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
|
| 196 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 197 |
+
|
| 198 |
label2id = {
|
| 199 |
"female": 0,
|
| 200 |
"male": 1
|
|
|
|
| 207 |
|
| 208 |
num_labels = 2
|
| 209 |
|
| 210 |
+
preds = get_gender(model_name_or_path, audio_paths, label2id, id2label, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
```
|
| 212 |
|
| 213 |
|