Update modeling_dots_vision.py (#19)
Browse files- Update modeling_dots_vision.py (a455edb59a10ff47d298fd2ab6b3fcf53417b42a)
Co-authored-by: chen.jian <[email protected]>
- modeling_dots_vision.py +133 -26
modeling_dots_vision.py
CHANGED
|
@@ -4,16 +4,29 @@ import torch
|
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
import torch.utils.checkpoint
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from torch.nn import LayerNorm
|
| 9 |
from transformers.modeling_utils import PreTrainedModel
|
| 10 |
from .configuration_dots import DotsVisionConfig
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def rotate_half(x):
|
| 14 |
"""Rotates half the hidden dims of the input."""
|
| 15 |
x1 = x[..., : x.shape[-1] // 2]
|
| 16 |
-
x2 = x[..., x.shape[-1] // 2
|
| 17 |
return torch.cat((-x2, x1), dim=-1)
|
| 18 |
|
| 19 |
|
|
@@ -48,15 +61,15 @@ class VisionRotaryEmbedding(nn.Module):
|
|
| 48 |
|
| 49 |
class PatchMerger(nn.Module):
|
| 50 |
def __init__(
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
) -> None:
|
| 58 |
super().__init__()
|
| 59 |
-
self.hidden_size = context_dim * (spatial_merge_size**2)
|
| 60 |
self.pre_norm = pre_norm
|
| 61 |
if self.pre_norm == "layernorm":
|
| 62 |
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
|
@@ -94,10 +107,10 @@ class VisionAttention(nn.Module):
|
|
| 94 |
self.proj = nn.Linear(dim, dim, bias=bias)
|
| 95 |
|
| 96 |
def forward(
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
) -> torch.Tensor:
|
| 102 |
seq_length = hidden_states.shape[0]
|
| 103 |
|
|
@@ -109,7 +122,7 @@ class VisionAttention(nn.Module):
|
|
| 109 |
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
| 110 |
)
|
| 111 |
for i in range(1, len(cu_seqlens)):
|
| 112 |
-
attention_mask[..., cu_seqlens[i - 1]
|
| 113 |
|
| 114 |
q = q.transpose(0, 1)
|
| 115 |
k = k.transpose(0, 1)
|
|
@@ -134,10 +147,10 @@ class VisionFlashAttention2(nn.Module):
|
|
| 134 |
self.is_causal = config.is_causal
|
| 135 |
|
| 136 |
def forward(
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
) -> torch.Tensor:
|
| 142 |
seq_length = hidden_states.shape[0]
|
| 143 |
q, k, v = (
|
|
@@ -154,6 +167,89 @@ class VisionFlashAttention2(nn.Module):
|
|
| 154 |
return attn_output
|
| 155 |
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
class VisionSdpaAttention(nn.Module):
|
| 158 |
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
|
| 159 |
super().__init__()
|
|
@@ -163,10 +259,10 @@ class VisionSdpaAttention(nn.Module):
|
|
| 163 |
self.config = config
|
| 164 |
|
| 165 |
def forward(
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
) -> torch.Tensor:
|
| 171 |
seq_length = hidden_states.shape[0]
|
| 172 |
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
@@ -176,7 +272,7 @@ class VisionSdpaAttention(nn.Module):
|
|
| 176 |
|
| 177 |
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
| 178 |
for i in range(1, len(cu_seqlens)):
|
| 179 |
-
attention_mask[..., cu_seqlens[i - 1]
|
| 180 |
|
| 181 |
q = q.transpose(0, 1)
|
| 182 |
k = k.transpose(0, 1)
|
|
@@ -192,8 +288,10 @@ class VisionSdpaAttention(nn.Module):
|
|
| 192 |
|
| 193 |
DOTS_VISION_ATTENTION_CLASSES = {
|
| 194 |
"eager": VisionAttention,
|
|
|
|
| 195 |
"flash_attention_2": VisionFlashAttention2,
|
| 196 |
"sdpa": VisionSdpaAttention,
|
|
|
|
| 197 |
}
|
| 198 |
|
| 199 |
|
|
@@ -231,7 +329,6 @@ class DotsSwiGLUFFN(nn.Module):
|
|
| 231 |
return x
|
| 232 |
|
| 233 |
|
| 234 |
-
|
| 235 |
class DotsPatchEmbed(nn.Module):
|
| 236 |
def __init__(self, config):
|
| 237 |
super().__init__()
|
|
@@ -249,7 +346,7 @@ class DotsPatchEmbed(nn.Module):
|
|
| 249 |
self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
| 250 |
|
| 251 |
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
|
| 252 |
-
x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
|
| 253 |
x = self.proj(x).view(-1, self.embed_dim)
|
| 254 |
x = self.norm(x)
|
| 255 |
return x
|
|
@@ -272,6 +369,16 @@ class DotsViTPreprocessor(nn.Module):
|
|
| 272 |
class DotsVisionBlock(nn.Module):
|
| 273 |
def __init__(self, config, attn_implementation: str = "flash_attention_2"):
|
| 274 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
|
| 276 |
config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
|
| 277 |
)
|
|
@@ -401,4 +508,4 @@ class DotsVisionTransformer(PreTrainedModel):
|
|
| 401 |
hidden_states = self.post_trunk_norm(hidden_states)
|
| 402 |
|
| 403 |
hidden_states = self.merger(hidden_states)
|
| 404 |
-
return hidden_states
|
|
|
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
import torch.utils.checkpoint
|
| 7 |
+
|
| 8 |
+
flash_attn_available = True
|
| 9 |
+
npu_available = True
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
from flash_attn import flash_attn_varlen_func
|
| 13 |
+
except ImportError:
|
| 14 |
+
flash_attn_available = False
|
| 15 |
+
|
| 16 |
from torch.nn import LayerNorm
|
| 17 |
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
from .configuration_dots import DotsVisionConfig
|
| 19 |
|
| 20 |
+
try:
|
| 21 |
+
import torch_npu
|
| 22 |
+
except ImportError:
|
| 23 |
+
npu_available = False
|
| 24 |
+
|
| 25 |
|
| 26 |
def rotate_half(x):
|
| 27 |
"""Rotates half the hidden dims of the input."""
|
| 28 |
x1 = x[..., : x.shape[-1] // 2]
|
| 29 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 30 |
return torch.cat((-x2, x1), dim=-1)
|
| 31 |
|
| 32 |
|
|
|
|
| 61 |
|
| 62 |
class PatchMerger(nn.Module):
|
| 63 |
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
dim: int,
|
| 66 |
+
context_dim: int,
|
| 67 |
+
spatial_merge_size: int = 2,
|
| 68 |
+
pre_norm="layernorm",
|
| 69 |
+
init_merger_std=None,
|
| 70 |
) -> None:
|
| 71 |
super().__init__()
|
| 72 |
+
self.hidden_size = context_dim * (spatial_merge_size ** 2)
|
| 73 |
self.pre_norm = pre_norm
|
| 74 |
if self.pre_norm == "layernorm":
|
| 75 |
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
|
|
|
| 107 |
self.proj = nn.Linear(dim, dim, bias=bias)
|
| 108 |
|
| 109 |
def forward(
|
| 110 |
+
self,
|
| 111 |
+
hidden_states: torch.Tensor,
|
| 112 |
+
cu_seqlens: torch.Tensor,
|
| 113 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 114 |
) -> torch.Tensor:
|
| 115 |
seq_length = hidden_states.shape[0]
|
| 116 |
|
|
|
|
| 122 |
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
| 123 |
)
|
| 124 |
for i in range(1, len(cu_seqlens)):
|
| 125 |
+
attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = 0
|
| 126 |
|
| 127 |
q = q.transpose(0, 1)
|
| 128 |
k = k.transpose(0, 1)
|
|
|
|
| 147 |
self.is_causal = config.is_causal
|
| 148 |
|
| 149 |
def forward(
|
| 150 |
+
self,
|
| 151 |
+
hidden_states: torch.Tensor,
|
| 152 |
+
cu_seqlens: torch.Tensor,
|
| 153 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 154 |
) -> torch.Tensor:
|
| 155 |
seq_length = hidden_states.shape[0]
|
| 156 |
q, k, v = (
|
|
|
|
| 167 |
return attn_output
|
| 168 |
|
| 169 |
|
| 170 |
+
class VisionAttentionV2(nn.Module):
|
| 171 |
+
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
|
| 172 |
+
super().__init__()
|
| 173 |
+
self.num_heads = num_heads
|
| 174 |
+
self.head_dim = dim // num_heads
|
| 175 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=bias)
|
| 176 |
+
self.proj = nn.Linear(dim, dim, bias=bias)
|
| 177 |
+
|
| 178 |
+
def forward(
|
| 179 |
+
self,
|
| 180 |
+
hidden_states: torch.Tensor,
|
| 181 |
+
cu_seqlens: torch.Tensor,
|
| 182 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 183 |
+
) -> torch.Tensor:
|
| 184 |
+
seq_length = hidden_states.shape[0]
|
| 185 |
+
|
| 186 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 187 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 188 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 189 |
+
|
| 190 |
+
seqlens = torch.diff(cu_seqlens).tolist()
|
| 191 |
+
|
| 192 |
+
q_list = torch.split(q, seqlens, 0)
|
| 193 |
+
k_list = torch.split(k, seqlens, 0)
|
| 194 |
+
v_list = torch.split(v, seqlens, 0)
|
| 195 |
+
# eager attention 空间复杂度为 O(n^2) , n 为 b*s(batch_size * seq_len), 序列太长容易OOM, 这个实现 更具batch 切分 seq
|
| 196 |
+
# 减少内存需求, 计算相对 continus batching 较慢。
|
| 197 |
+
outputs = []
|
| 198 |
+
for q_i, k_i, v_i in zip(q_list, k_list, v_list):
|
| 199 |
+
q_i = q_i.transpose(0, 1)
|
| 200 |
+
k_i = k_i.transpose(0, 1)
|
| 201 |
+
v_i = v_i.transpose(0, 1)
|
| 202 |
+
out = torch.matmul(q_i, k_i.transpose(1, 2)) / math.sqrt(self.head_dim)
|
| 203 |
+
out = nn.functional.softmax(out, dim=-1, dtype=torch.float32).to(q.dtype)
|
| 204 |
+
out = torch.matmul(out, v_i)
|
| 205 |
+
out = out.transpose(0, 1)
|
| 206 |
+
outputs.append(out)
|
| 207 |
+
|
| 208 |
+
attn_output = torch.concat(outputs, dim=0)
|
| 209 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
| 210 |
+
attn_output = self.proj(attn_output)
|
| 211 |
+
return attn_output
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
class VisionAscendAttention(nn.Module):
|
| 215 |
+
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
|
| 216 |
+
super().__init__()
|
| 217 |
+
self.num_heads = num_heads
|
| 218 |
+
self.head_dim = dim // num_heads
|
| 219 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=bias)
|
| 220 |
+
self.proj = nn.Linear(dim, dim, bias=bias)
|
| 221 |
+
self.config = config
|
| 222 |
+
|
| 223 |
+
def forward(
|
| 224 |
+
self,
|
| 225 |
+
hidden_states: torch.Tensor,
|
| 226 |
+
cu_seqlens: torch.Tensor,
|
| 227 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 228 |
+
) -> torch.Tensor:
|
| 229 |
+
seq_length = hidden_states.shape[0]
|
| 230 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 231 |
+
|
| 232 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 233 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 234 |
+
|
| 235 |
+
attention_mask = torch.ones([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
| 236 |
+
for i in range(1, len(cu_seqlens)):
|
| 237 |
+
attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = False
|
| 238 |
+
|
| 239 |
+
q = q.transpose(0, 1).unsqueeze(0)
|
| 240 |
+
k = k.transpose(0, 1).unsqueeze(0)
|
| 241 |
+
v = v.transpose(0, 1).unsqueeze(0)
|
| 242 |
+
|
| 243 |
+
attn_output = torch_npu.npu_prompt_flash_attention(q, k, v,
|
| 244 |
+
atten_mask=attention_mask,
|
| 245 |
+
num_heads=self.num_heads, input_layout="BNSD",
|
| 246 |
+
scale_value=self.head_dim ** -0.5)
|
| 247 |
+
attn_output = attn_output.squeeze(0).transpose(0, 1)
|
| 248 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
| 249 |
+
attn_output = self.proj(attn_output)
|
| 250 |
+
return attn_output
|
| 251 |
+
|
| 252 |
+
|
| 253 |
class VisionSdpaAttention(nn.Module):
|
| 254 |
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
|
| 255 |
super().__init__()
|
|
|
|
| 259 |
self.config = config
|
| 260 |
|
| 261 |
def forward(
|
| 262 |
+
self,
|
| 263 |
+
hidden_states: torch.Tensor,
|
| 264 |
+
cu_seqlens: torch.Tensor,
|
| 265 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 266 |
) -> torch.Tensor:
|
| 267 |
seq_length = hidden_states.shape[0]
|
| 268 |
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
|
|
| 272 |
|
| 273 |
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
| 274 |
for i in range(1, len(cu_seqlens)):
|
| 275 |
+
attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = True
|
| 276 |
|
| 277 |
q = q.transpose(0, 1)
|
| 278 |
k = k.transpose(0, 1)
|
|
|
|
| 288 |
|
| 289 |
DOTS_VISION_ATTENTION_CLASSES = {
|
| 290 |
"eager": VisionAttention,
|
| 291 |
+
"eager_v2": VisionAttentionV2, # 内存更少
|
| 292 |
"flash_attention_2": VisionFlashAttention2,
|
| 293 |
"sdpa": VisionSdpaAttention,
|
| 294 |
+
"ascend_fa": VisionAscendAttention, # ascend, 长序列精度下降严重。
|
| 295 |
}
|
| 296 |
|
| 297 |
|
|
|
|
| 329 |
return x
|
| 330 |
|
| 331 |
|
|
|
|
| 332 |
class DotsPatchEmbed(nn.Module):
|
| 333 |
def __init__(self, config):
|
| 334 |
super().__init__()
|
|
|
|
| 346 |
self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
| 347 |
|
| 348 |
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
|
| 349 |
+
x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
|
| 350 |
x = self.proj(x).view(-1, self.embed_dim)
|
| 351 |
x = self.norm(x)
|
| 352 |
return x
|
|
|
|
| 369 |
class DotsVisionBlock(nn.Module):
|
| 370 |
def __init__(self, config, attn_implementation: str = "flash_attention_2"):
|
| 371 |
super().__init__()
|
| 372 |
+
|
| 373 |
+
if attn_implementation == "flash_attention_2" and not flash_attn_available:
|
| 374 |
+
# fallback to eager
|
| 375 |
+
attn_implementation = "eager"
|
| 376 |
+
print("flash attention not available! fallback to eager implementation ")
|
| 377 |
+
|
| 378 |
+
if attn_implementation == "ascend_fa" and not npu_available:
|
| 379 |
+
attn_implementation = "eager"
|
| 380 |
+
print("flash attention not available! fallback to eager implementation ")
|
| 381 |
+
|
| 382 |
self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
|
| 383 |
config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
|
| 384 |
)
|
|
|
|
| 508 |
hidden_states = self.post_trunk_norm(hidden_states)
|
| 509 |
|
| 510 |
hidden_states = self.merger(hidden_states)
|
| 511 |
+
return hidden_states
|