--- license: mit base_model: csarron/bert-base-uncased-squad-v1 tags: - generated_from_trainer model-index: - name: bert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V1 results: [] --- # bert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V1 This model is a fine-tuned version of [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 60 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.3874 | 0.0599 | 100 | 3.3698 | | 3.4284 | 0.1198 | 200 | 3.0414 | | 3.1997 | 0.1796 | 300 | 2.9118 | | 3.137 | 0.2395 | 400 | 2.8702 | | 3.0928 | 0.2994 | 500 | 2.8431 | | 3.1799 | 0.3593 | 600 | 2.8197 | | 3.0335 | 0.4192 | 700 | 2.8069 | | 3.0366 | 0.4790 | 800 | 2.7901 | | 3.0403 | 0.5389 | 900 | 2.7791 | | 3.0957 | 0.5988 | 1000 | 2.7762 | | 3.1361 | 0.6587 | 1100 | 2.7784 | | 2.9658 | 0.7186 | 1200 | 2.7671 | | 3.0905 | 0.7784 | 1300 | 2.7583 | | 3.0258 | 0.8383 | 1400 | 2.7524 | | 3.0427 | 0.8982 | 1500 | 2.7471 | | 2.9677 | 0.9581 | 1600 | 2.7434 | | 2.9417 | 1.0180 | 1700 | 2.7501 | | 3.011 | 1.0778 | 1800 | 2.7379 | | 2.8598 | 1.1377 | 1900 | 2.7423 | | 3.0521 | 1.1976 | 2000 | 2.7356 | | 2.9869 | 1.2575 | 2100 | 2.7317 | | 3.0301 | 1.3174 | 2200 | 2.7308 | | 3.0015 | 1.3772 | 2300 | 2.7305 | | 2.9257 | 1.4371 | 2400 | 2.7284 | | 3.0083 | 1.4970 | 2500 | 2.7268 | | 3.0781 | 1.5569 | 2600 | 2.7240 | | 3.008 | 1.6168 | 2700 | 2.7262 | | 3.0217 | 1.6766 | 2800 | 2.7192 | | 2.9717 | 1.7365 | 2900 | 2.7154 | | 2.964 | 1.7964 | 3000 | 2.7206 | | 3.0208 | 1.8563 | 3100 | 2.7211 | | 3.0612 | 1.9162 | 3200 | 2.7152 | | 2.9425 | 1.9760 | 3300 | 2.7198 | | 2.9976 | 2.0359 | 3400 | 2.7145 | | 3.0736 | 2.0958 | 3500 | 2.7140 | | 3.0291 | 2.1557 | 3600 | 2.7119 | | 2.939 | 2.2156 | 3700 | 2.7098 | | 2.9418 | 2.2754 | 3800 | 2.7119 | | 2.9639 | 2.3353 | 3900 | 2.7139 | | 3.0 | 2.3952 | 4000 | 2.7113 | | 3.0245 | 2.4551 | 4100 | 2.7111 | | 2.9465 | 2.5150 | 4200 | 2.7092 | | 2.9164 | 2.5749 | 4300 | 2.7114 | | 2.9692 | 2.6347 | 4400 | 2.7108 | | 2.976 | 2.6946 | 4500 | 2.7091 | | 2.9894 | 2.7545 | 4600 | 2.7076 | | 2.9112 | 2.8144 | 4700 | 2.7074 | | 2.9447 | 2.8743 | 4800 | 2.7077 | | 2.9744 | 2.9341 | 4900 | 2.7073 | | 2.9255 | 2.9940 | 5000 | 2.7077 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.6.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1