Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- image-classification
|
| 4 |
+
- vision
|
| 5 |
+
- vit
|
| 6 |
+
- deepfake
|
| 7 |
+
- binary-classification
|
| 8 |
+
pipeline_tag: image-classification
|
| 9 |
+
language: en
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# 🧠 Model1-v1-Rival — Deepfake Image Classifier
|
| 14 |
+
|
| 15 |
+
This model is a fine-tuned **Vision Transformer (ViT)** for detecting whether a face image is **REAL** or **FAKE (Deepfake)**.
|
| 16 |
+
|
| 17 |
+
It was trained using a mixed deepfake dataset with augmentations to ensure robustness across manipulation methods and compression artifacts.
|
| 18 |
+
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
## 📌 Model Details
|
| 22 |
+
|
| 23 |
+
| Field | Value |
|
| 24 |
+
|-------|-------|
|
| 25 |
+
| Base Model | `google/vit-base-patch16-224-in21k` |
|
| 26 |
+
| Task | Image Classification (Binary) |
|
| 27 |
+
| Labels | `{0: Fake, 1: Real}` |
|
| 28 |
+
| File Format | `safetensors` |
|
| 29 |
+
| Optimizer | AdamW |
|
| 30 |
+
| Epochs | 2 |
|
| 31 |
+
| Learning Rate | `1e-6` |
|
| 32 |
+
| Batch Size | 32 |
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## 🏷️ Labels
|
| 37 |
+
|
| 38 |
+
The model predicts:
|
| 39 |
+
|
| 40 |
+
| Label | Meaning |
|
| 41 |
+
|-------|---------|
|
| 42 |
+
| `fake` | manipulated / deepfake image |
|
| 43 |
+
| `real` | authentic human face |
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
## 🚀 Usage
|
| 48 |
+
|
| 49 |
+
#### 🔧 With `transformers`
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
| 53 |
+
from PIL import Image
|
| 54 |
+
import torch
|
| 55 |
+
|
| 56 |
+
model_name = "alrivalda/Model1-v1-Rival"
|
| 57 |
+
|
| 58 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 59 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 60 |
+
|
| 61 |
+
img = Image.open("your_image.jpg")
|
| 62 |
+
|
| 63 |
+
inputs = processor(img, return_tensors="pt")
|
| 64 |
+
outputs = model(**inputs).logits
|
| 65 |
+
probabilities = torch.softmax(outputs, dim=1)
|
| 66 |
+
|
| 67 |
+
pred_id = torch.argmax(probabilities).item()
|
| 68 |
+
label = model.config.id2label[pred_id]
|
| 69 |
+
|
| 70 |
+
print("Prediction:", label)
|
| 71 |
+
print("Confidence:", float(probabilities[0][pred_id]))
|