--- tags: - image-classification - vision - vit - deepfake - binary-classification pipeline_tag: image-classification language: en license: apache-2.0 --- # 🧠 Model1-v1-Rival — Deepfake Image Classifier This model is a fine-tuned **Vision Transformer (ViT)** for detecting whether a face image is **REAL** or **FAKE (Deepfake)**. It was trained using a mixed deepfake dataset with augmentations to ensure robustness across manipulation methods and compression artifacts. --- ## 📌 Model Details | Field | Value | |-------|-------| | Base Model | `google/vit-base-patch16-224-in21k` | | Task | Image Classification (Binary) | | Labels | `{0: Fake, 1: Real}` | | File Format | `safetensors` | | Optimizer | AdamW | | Epochs | 2 | | Learning Rate | `1e-6` | | Batch Size | 32 | --- ## 🏷️ Labels The model predicts: | Label | Meaning | |-------|---------| | `fake` | manipulated / deepfake image | | `real` | authentic human face | --- ## 🚀 Usage #### 🔧 With `transformers` ```python from transformers import AutoModelForImageClassification, AutoImageProcessor from PIL import Image import torch model_name = "alrivalda/Model1-v1-Rival" processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) img = Image.open("your_image.jpg") inputs = processor(img, return_tensors="pt") outputs = model(**inputs).logits probabilities = torch.softmax(outputs, dim=1) pred_id = torch.argmax(probabilities).item() label = model.config.id2label[pred_id] print("Prediction:", label) print("Confidence:", float(probabilities[0][pred_id]))