wacc2 commited on
Commit
a7b2741
·
verified ·
1 Parent(s): 3337d6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -3
README.md CHANGED
@@ -13,13 +13,25 @@ tags:
13
  - text-generation-inference
14
  ---
15
 
16
- ### Qwen2.5-7B-PT-BR-Instruct
17
  #### Introduction
18
- Qwen2.5-7B-PT-BR-Instruct is a Brazilian-Portuguese language model (PT-BR-LLM) developed from the base model Qwen2.5-7B by fine-tuning, for 2 epochs, with the superset instruction dataset.
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  #### Usage
21
 
22
- You can use Qwen2.5-7B-PT-BR-Instruct with the latest HuggingFace Transformers library and we advise you to use the latest version of transformers.
23
 
24
  With transformers<4.37.0, you will encounter the following error:
25
 
@@ -28,6 +40,55 @@ KeyError: 'qwen2'
28
  Below, we have provided a simple example of how to load the model and generate text:
29
 
30
  #### Quickstart
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  #### Citation
33
 
 
13
  - text-generation-inference
14
  ---
15
 
16
+ ### Amadeus-Verbo-Qwen2.5-7B-PT-BR-Instruct
17
  #### Introduction
18
+ Amadeus-Verbo-Qwen2.5-7B-PT-BR-Instruct is a Brazilian-Portuguese language model (PT-BR-LLM) developed from the base model Qwen2.5-7B through fine-tuning, for 2 epochs, with the superset instruction dataset.
19
+ Read our article [here](https://www.).
20
+
21
+ ## Details
22
+
23
+ - **Architecture:** a Transformer-based model with RoPE, SwiGLU, RMSNorm, and Attention QKV bias pre-trained via Causal Language Modeling
24
+ - **Parameters:** 7.62B parameters
25
+ - **Number of Parameters (Non-Embedding):** 6.53B
26
+ - **Number of Layers:** 28
27
+ - **Number of Attention Heads (GQA):** 28 for Q and 4 for KV
28
+ - **Context length:** 131,072 tokens
29
+ - **Number of steps:** 78838
30
+ - **Language:** Brazilian Portuguese
31
 
32
  #### Usage
33
 
34
+ You can use Amadeus-Verbo-Qwen2.5-7B-PT-BR-Instruct with the latest HuggingFace Transformers library and we advise you to use the latest version of transformers.
35
 
36
  With transformers<4.37.0, you will encounter the following error:
37
 
 
40
  Below, we have provided a simple example of how to load the model and generate text:
41
 
42
  #### Quickstart
43
+ The following code snippet uses apply_chat_template to show how to load the tokenizer, the model, and how to generate content.
44
+
45
+ Using the pipeline:
46
+ ```python
47
+ from transformers import pipeline
48
+
49
+ messages = [
50
+ {"role": "user", "content": "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana"},
51
+ ]
52
+ pipe = pipeline("text-generation", model="amadeusai/qwen2.5-7B-PT-BR-Instruct")
53
+ pipe(messages)
54
+ ```
55
+
56
+ Using the `AutoTokenizer` and `AutoModelForCausalLM`:
57
+ ```python
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer
59
+
60
+ model_name = "amadeusai/qwen2.5-7B-PT-BR-Instruct"
61
+
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_name,
64
+ torch_dtype="auto",
65
+ device_map="auto"
66
+ )
67
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
68
+
69
+ prompt = "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana."
70
+ messages = [
71
+ {"role": "system", "content": "Você é um assistente útil."},
72
+ {"role": "user", "content": prompt}
73
+ ]
74
+ text = tokenizer.apply_chat_template(
75
+ messages,
76
+ tokenize=False,
77
+ add_generation_prompt=True
78
+ )
79
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
80
+
81
+ generated_ids = model.generate(
82
+ **model_inputs,
83
+ max_new_tokens=512
84
+ )
85
+ generated_ids = [
86
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
87
+ ]
88
+
89
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
90
+
91
+ ```
92
 
93
  #### Citation
94